
The frequency of tuning forks $A$ and $B$ are respectively $3\%$ more and $2\%$ less than the frequency of tuning fork $C$. When $A$ and $B$ are simultaneously excited, $5\text{ beats/sec}$ are produced. Then the frequency of the tuning fork $A\left( \text{In Hz} \right)$ is
$A)\text{ }98$
$B)\text{ 100}$
$C)\text{ 103}$
$D)\text{ 105}$
Answer
491.4k+ views
Hint: This problem can be solved by using the formula for the beats produced by two nearby frequencies. We can write the frequencies of tuning forks A and B in terms of that of C and then find the frequency of C from which we can further get the frequency of A.
Formula used:
$f=\left| {{f}_{1}}-{{f}_{2}} \right|$
Complete step by step answer:
We will write the frequency of the tuning forks of A and B in terms of C and then find C from the beat frequency.
Let the frequency of tuning fork $A$ be ${{f}_{A}}$.
Let the frequency of tuning fork $B$ be ${{f}_{B}}$.
Let the frequency of the tuning fork $C$ be ${{f}_{C}}$.
According to the question, the frequency of tuning fork $A$ is $3\%$ more than the frequency of tuning fork $C$.
$\therefore {{f}_{A}}={{f}_{C}}+\dfrac{3}{100}{{f}_{C}}=\dfrac{100+3}{100}{{f}_{C}}=\dfrac{103}{100}{{f}_{C}}$ --(1)
Also, according to the question, the frequency of tuning fork $B$ is $2\%$ less than the frequency of tuning fork $C$.
$\therefore {{f}_{B}}={{f}_{C}}-\dfrac{2}{100}{{f}_{C}}=\dfrac{100-2}{100}{{f}_{C}}=\dfrac{98}{100}{{f}_{C}}$ --(2)
According to the question, the frequency of the beats produced when tuning forks $A$ and $B$ are struck simultaneously is $f=5\text{ /sec}=5Hz$ $\left( \because 1\text{ se}{{\text{c}}^{-1}}=1Hz \right)$
The beats frequency $f$ produced when two waves of nearby frequencies ${{f}_{1}}$ and ${{f}_{2}}$ superimpose is given by
$f=\left| {{f}_{1}}-{{f}_{2}} \right|$ --(3)
Now, using (3), we get
$f=\left| {{f}_{A}}-{{f}_{B}} \right|$
Now using (1) and (2), we get
$f=\left| \dfrac{103}{100}{{f}_{C}}-\dfrac{98}{100}{{f}_{C}} \right|=\left| \dfrac{103-98}{100}{{f}_{C}} \right|=\left| \dfrac{5}{100}{{f}_{C}} \right|=\dfrac{5}{100}{{f}_{C}}$ $\left( \because {{f}_{C}}>0 \right)$
$\therefore 5=\dfrac{5}{100}{{f}_{C}}$
$\therefore {{f}_{C}}=100Hz$ --(4)
Putting (4) in (1), we get
${{f}_{A}}=\dfrac{103}{100}{{f}_{C}}=\dfrac{103}{100}\times 100=103Hz$
Hence, the frequency of tuning fork $A$ is $103Hz$.
Hence, the correct option is $C)\text{ 103}$.
Note: Students could have made the mistake in understanding the language and determining the relationship of the frequencies of tuning forks A and B with that of C. A very common mistake is that students think that the frequency of A and B are the respective percentages of the frequency of C and cannot catch that A is more than C by that percentage and B is less than C by that percentage. This will lead to a completely wrong result on the part of the student.
Formula used:
$f=\left| {{f}_{1}}-{{f}_{2}} \right|$
Complete step by step answer:
We will write the frequency of the tuning forks of A and B in terms of C and then find C from the beat frequency.
Let the frequency of tuning fork $A$ be ${{f}_{A}}$.
Let the frequency of tuning fork $B$ be ${{f}_{B}}$.
Let the frequency of the tuning fork $C$ be ${{f}_{C}}$.
According to the question, the frequency of tuning fork $A$ is $3\%$ more than the frequency of tuning fork $C$.
$\therefore {{f}_{A}}={{f}_{C}}+\dfrac{3}{100}{{f}_{C}}=\dfrac{100+3}{100}{{f}_{C}}=\dfrac{103}{100}{{f}_{C}}$ --(1)
Also, according to the question, the frequency of tuning fork $B$ is $2\%$ less than the frequency of tuning fork $C$.
$\therefore {{f}_{B}}={{f}_{C}}-\dfrac{2}{100}{{f}_{C}}=\dfrac{100-2}{100}{{f}_{C}}=\dfrac{98}{100}{{f}_{C}}$ --(2)
According to the question, the frequency of the beats produced when tuning forks $A$ and $B$ are struck simultaneously is $f=5\text{ /sec}=5Hz$ $\left( \because 1\text{ se}{{\text{c}}^{-1}}=1Hz \right)$
The beats frequency $f$ produced when two waves of nearby frequencies ${{f}_{1}}$ and ${{f}_{2}}$ superimpose is given by
$f=\left| {{f}_{1}}-{{f}_{2}} \right|$ --(3)
Now, using (3), we get
$f=\left| {{f}_{A}}-{{f}_{B}} \right|$
Now using (1) and (2), we get
$f=\left| \dfrac{103}{100}{{f}_{C}}-\dfrac{98}{100}{{f}_{C}} \right|=\left| \dfrac{103-98}{100}{{f}_{C}} \right|=\left| \dfrac{5}{100}{{f}_{C}} \right|=\dfrac{5}{100}{{f}_{C}}$ $\left( \because {{f}_{C}}>0 \right)$
$\therefore 5=\dfrac{5}{100}{{f}_{C}}$
$\therefore {{f}_{C}}=100Hz$ --(4)
Putting (4) in (1), we get
${{f}_{A}}=\dfrac{103}{100}{{f}_{C}}=\dfrac{103}{100}\times 100=103Hz$
Hence, the frequency of tuning fork $A$ is $103Hz$.
Hence, the correct option is $C)\text{ 103}$.
Note: Students could have made the mistake in understanding the language and determining the relationship of the frequencies of tuning forks A and B with that of C. A very common mistake is that students think that the frequency of A and B are the respective percentages of the frequency of C and cannot catch that A is more than C by that percentage and B is less than C by that percentage. This will lead to a completely wrong result on the part of the student.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

What are the elders in Goa nostalgic about class 11 social science CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Name the chemical used in black and white photogra class 11 chemistry CBSE

Explain Markovnikovs and AntiMarkovnikovs rule using class 11 chemistry CBSE
