Answer
Verified
460.8k+ views
Hint: First, before proceeding for this, we must know that for calculating the increasing range of any function f(x), we have the condition as ${f}'\left( x \right)>0$. Then, by using the chain rule and product rule as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u$, we get the derivative of the given function. Then, by using the condition for the increasing function and by using options, we get the desired range.
Complete step-by-step solution
In this question, we are supposed to find the interval for which the function $f\left( x \right)=2\ln \left| x \right|-x\left| x \right|$ is increasing.
So, before proceeding for this, we must know that for calculating the increasing range of any function f(x), we have the condition as:
${f}'\left( x \right) > 0$
Now, by using the chain rule and product rule as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u$, we get the derivative of the given function as:
$\begin{align}
& {f}'\left( x \right)=2\dfrac{d}{dx}\ln \left| x \right|-\dfrac{d}{dx}\left( x\left| x \right| \right) \\
& \Rightarrow {f}'\left( x \right)=2\times \dfrac{1}{\left| x \right|}\dfrac{d}{dx}\left| x \right|-\left( x\dfrac{d}{dx}\left| x \right|+\left| x \right|\dfrac{d}{dx}x \right) \\
& \Rightarrow {f}'\left( x \right)=2\times \dfrac{1}{\left| x \right|}\times \dfrac{x}{\left| x \right|}-\left( x\times \dfrac{x}{\left| x \right|}+\left| x \right|\times 1 \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{2x}{{{\left| x \right|}^{2}}}-\left( \dfrac{{{x}^{2}}}{\left| x \right|}+\left| x \right| \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{2x}{{{\left| x \right|}^{2}}}-\dfrac{{{x}^{2}}}{\left| x \right|}-\left| x \right| \\
\end{align}$
Now, by using the condition for the increasing function, we get:
$\dfrac{2x}{{{\left| x \right|}^{2}}}-\dfrac{{{x}^{2}}}{\left| x \right|}-\left| x \right|>0$
Then, by solving the above expression, we get the range of x where function is increasing as:
$\begin{align}
& \dfrac{2x-{{x}^{2}}\left| x \right|-{{\left| x \right|}^{3}}}{{{\left| x \right|}^{2}}}>0 \\
& \Rightarrow 2x-{{x}^{2}}\left| x \right|-{{\left| x \right|}^{3}}>0 \\
\end{align}$
Now, we have to check the condition for each option by taking the value from that range as starting for the first option (0, 1) and test for the value of x as 0.5, we get:
$\begin{align}
& 2\left( 0.5 \right)-{{\left( 0.5 \right)}^{2}}\left| 0.5 \right|-{{\left| 0.5 \right|}^{3}} \\
& \Rightarrow 1-0.125-0.125 \\
& \Rightarrow 0.75 \\
\end{align}$
So, it gives the values as positive which is greater than 0, so this option is correct.
Now, we have to check the condition for second option $\left( 0,\infty \right)$ and test for the value of x as 1, we get:
$\begin{align}
& 2\left( 1 \right)-{{\left( 1 \right)}^{2}}\left| 1 \right|-{{\left| 1 \right|}^{3}} \\
& \Rightarrow 2-1-1 \\
& \Rightarrow 0 \\
\end{align}$
So, it gives the value as negative which is less than 0, so this option is incorrect.
Now, we have to check the condition for second option (-1, 1) and test for the value of x as 0, we get:
$\begin{align}
& 2\left( 0 \right)-{{\left( 0 \right)}^{2}}\left| 0 \right|-{{\left| 0 \right|}^{3}} \\
& \Rightarrow 0-0-0 \\
& \Rightarrow 0 \\
\end{align}$
So, it gives the value as negative which is less than 0, so this option is incorrect.
Now, we have to check the condition for second option (-1, 0) and test for the value of x as -0.5, we get:
$\begin{align}
& 2\left( -0.5 \right)-{{\left( -0.5 \right)}^{2}}\left| -0.5 \right|-{{\left| -0.5 \right|}^{3}} \\
& \Rightarrow -1-0.125-0.125 \\
& \Rightarrow -1.25 \\
\end{align}$
So, it gives the value as negative which is less than 0, so this option is incorrect.
Hence, option (a) is correct.
Note: Now, to solve these types of the questions we need to know some of the basics of differentiation so that we can get the answer easily. So, the basic formula required for this question is as:
$\dfrac{d}{dx}\left| x \right|=\dfrac{x}{\left| x \right|}$
Complete step-by-step solution
In this question, we are supposed to find the interval for which the function $f\left( x \right)=2\ln \left| x \right|-x\left| x \right|$ is increasing.
So, before proceeding for this, we must know that for calculating the increasing range of any function f(x), we have the condition as:
${f}'\left( x \right) > 0$
Now, by using the chain rule and product rule as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u$, we get the derivative of the given function as:
$\begin{align}
& {f}'\left( x \right)=2\dfrac{d}{dx}\ln \left| x \right|-\dfrac{d}{dx}\left( x\left| x \right| \right) \\
& \Rightarrow {f}'\left( x \right)=2\times \dfrac{1}{\left| x \right|}\dfrac{d}{dx}\left| x \right|-\left( x\dfrac{d}{dx}\left| x \right|+\left| x \right|\dfrac{d}{dx}x \right) \\
& \Rightarrow {f}'\left( x \right)=2\times \dfrac{1}{\left| x \right|}\times \dfrac{x}{\left| x \right|}-\left( x\times \dfrac{x}{\left| x \right|}+\left| x \right|\times 1 \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{2x}{{{\left| x \right|}^{2}}}-\left( \dfrac{{{x}^{2}}}{\left| x \right|}+\left| x \right| \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{2x}{{{\left| x \right|}^{2}}}-\dfrac{{{x}^{2}}}{\left| x \right|}-\left| x \right| \\
\end{align}$
Now, by using the condition for the increasing function, we get:
$\dfrac{2x}{{{\left| x \right|}^{2}}}-\dfrac{{{x}^{2}}}{\left| x \right|}-\left| x \right|>0$
Then, by solving the above expression, we get the range of x where function is increasing as:
$\begin{align}
& \dfrac{2x-{{x}^{2}}\left| x \right|-{{\left| x \right|}^{3}}}{{{\left| x \right|}^{2}}}>0 \\
& \Rightarrow 2x-{{x}^{2}}\left| x \right|-{{\left| x \right|}^{3}}>0 \\
\end{align}$
Now, we have to check the condition for each option by taking the value from that range as starting for the first option (0, 1) and test for the value of x as 0.5, we get:
$\begin{align}
& 2\left( 0.5 \right)-{{\left( 0.5 \right)}^{2}}\left| 0.5 \right|-{{\left| 0.5 \right|}^{3}} \\
& \Rightarrow 1-0.125-0.125 \\
& \Rightarrow 0.75 \\
\end{align}$
So, it gives the values as positive which is greater than 0, so this option is correct.
Now, we have to check the condition for second option $\left( 0,\infty \right)$ and test for the value of x as 1, we get:
$\begin{align}
& 2\left( 1 \right)-{{\left( 1 \right)}^{2}}\left| 1 \right|-{{\left| 1 \right|}^{3}} \\
& \Rightarrow 2-1-1 \\
& \Rightarrow 0 \\
\end{align}$
So, it gives the value as negative which is less than 0, so this option is incorrect.
Now, we have to check the condition for second option (-1, 1) and test for the value of x as 0, we get:
$\begin{align}
& 2\left( 0 \right)-{{\left( 0 \right)}^{2}}\left| 0 \right|-{{\left| 0 \right|}^{3}} \\
& \Rightarrow 0-0-0 \\
& \Rightarrow 0 \\
\end{align}$
So, it gives the value as negative which is less than 0, so this option is incorrect.
Now, we have to check the condition for second option (-1, 0) and test for the value of x as -0.5, we get:
$\begin{align}
& 2\left( -0.5 \right)-{{\left( -0.5 \right)}^{2}}\left| -0.5 \right|-{{\left| -0.5 \right|}^{3}} \\
& \Rightarrow -1-0.125-0.125 \\
& \Rightarrow -1.25 \\
\end{align}$
So, it gives the value as negative which is less than 0, so this option is incorrect.
Hence, option (a) is correct.
Note: Now, to solve these types of the questions we need to know some of the basics of differentiation so that we can get the answer easily. So, the basic formula required for this question is as:
$\dfrac{d}{dx}\left| x \right|=\dfrac{x}{\left| x \right|}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE