The geometry of $Xe{{O}_{3}}$ is ________.
(A) linear
(B) planar
(C) pyramidal
(D) T-shaped
Answer
Verified
473.7k+ views
Hint: Start by writing electronic configuration in Xenon oxide. Calculate the number of electron pairs in the given molecule, $Xe{{O}_{3}}$. Find out the hybridization of $Xe{{O}_{3}}$ and draw the structure accordingly.
Complete step by step answer:
- Xenon belongs to the group of inert gases and it has the atomic number 54.
- Its electronic configuration is,
\[Xe=1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{10}}4{{p}^{6}}5{{s}^{2}}4{{d}^{10}}5{{p}^{6}}\]
- Oxygen has the atomic number 8. Its electronic configuration is,
\[O=1{{s}^{2}}2{{s}^{2}}2{{p}^{4}}\]
- For Xenon trioxide, $Xe{{O}_{3}}$, let’s calculate the number of electron pairs.
- Xenon has 8 valence electrons and oxygen has 6 valence electrons.
- Therefore, $8+\left( 3\times 6 \right)=\dfrac{26}{2}=13$ electron pairs. So, $Xe{{O}_{3}}$ has 13 electron pairs present in it.
- Let’s draw the Lewis structure for $Xe{{O}_{3}}$.
- In this structure, we can see that all 13 electron pairs are present either as bond-pairs or as lone-pairs.
- Let’s take a look at its hybridization now. Xenon has vacant 5d orbitals so, when xenon gets excited its fifth orbital configuration will become $5{{s}^{2}}5{{p}^{3}}5{{d}^{3}}$. 5s and 5p orbitals will undergo $s{{p}^{3}}$ hybridization.
- Therefore, Xenon in xenon trioxide will have three $s{{p}^{3}}$ hybrid orbitals, containing three unpaired electrons and one lone pair of electrons, and unhybridized 5d orbitals having three unpaired electrons.
- Oxygen will undergo $s{{p}^{2}}$ hybridization and will have two $s{{p}^{2}}$ hybridized orbitals having one lone pair of electrons each and one $s{{p}^{2}}$ hybridized orbital containing one unpaired electron. It will have one unhybridized 2p orbital having one electron.
- The three $s{{p}^{3}}$ orbitals of xenon having three unpaired electrons will axially overlap with three $s{{p}^{2}}$ orbitals of three individual oxygen atoms to form three $\sigma -bonds$. The three 5d orbitals will laterally overlap with three 2p unhybridized orbitals of three oxygen atoms to form three $\pi -bonds$.
- Now, each oxygen atom has two lone pairs of electrons and a xenon atom has one lone pair of electrons. Xenon and oxygen are doubly bonded to each other.
- Due to the presence of lone pair on central atom Xenon, there will be lone pair-bond pair repulsion in the molecule. So, the trigonal planar geometry will be distorted to form pyramidal geometry.
- Therefore, the geometry of $Xe{{O}_{3}}$ is pyramidal.
So, the correct answer is “Option C”.
Note: Remember when there is a lone pair present on the central atom, there will be lone pair- bond pair repulsion between the central atom and the other atoms linked to it. This will lead to distortion of geometry. Xenon trioxide is an unstable compound and it is a very powerful oxidizing agent.
Complete step by step answer:
- Xenon belongs to the group of inert gases and it has the atomic number 54.
- Its electronic configuration is,
\[Xe=1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{10}}4{{p}^{6}}5{{s}^{2}}4{{d}^{10}}5{{p}^{6}}\]
- Oxygen has the atomic number 8. Its electronic configuration is,
\[O=1{{s}^{2}}2{{s}^{2}}2{{p}^{4}}\]
- For Xenon trioxide, $Xe{{O}_{3}}$, let’s calculate the number of electron pairs.
- Xenon has 8 valence electrons and oxygen has 6 valence electrons.
- Therefore, $8+\left( 3\times 6 \right)=\dfrac{26}{2}=13$ electron pairs. So, $Xe{{O}_{3}}$ has 13 electron pairs present in it.
- Let’s draw the Lewis structure for $Xe{{O}_{3}}$.
- In this structure, we can see that all 13 electron pairs are present either as bond-pairs or as lone-pairs.
- Let’s take a look at its hybridization now. Xenon has vacant 5d orbitals so, when xenon gets excited its fifth orbital configuration will become $5{{s}^{2}}5{{p}^{3}}5{{d}^{3}}$. 5s and 5p orbitals will undergo $s{{p}^{3}}$ hybridization.
- Therefore, Xenon in xenon trioxide will have three $s{{p}^{3}}$ hybrid orbitals, containing three unpaired electrons and one lone pair of electrons, and unhybridized 5d orbitals having three unpaired electrons.
- Oxygen will undergo $s{{p}^{2}}$ hybridization and will have two $s{{p}^{2}}$ hybridized orbitals having one lone pair of electrons each and one $s{{p}^{2}}$ hybridized orbital containing one unpaired electron. It will have one unhybridized 2p orbital having one electron.
- The three $s{{p}^{3}}$ orbitals of xenon having three unpaired electrons will axially overlap with three $s{{p}^{2}}$ orbitals of three individual oxygen atoms to form three $\sigma -bonds$. The three 5d orbitals will laterally overlap with three 2p unhybridized orbitals of three oxygen atoms to form three $\pi -bonds$.
- Now, each oxygen atom has two lone pairs of electrons and a xenon atom has one lone pair of electrons. Xenon and oxygen are doubly bonded to each other.
- Due to the presence of lone pair on central atom Xenon, there will be lone pair-bond pair repulsion in the molecule. So, the trigonal planar geometry will be distorted to form pyramidal geometry.
- Therefore, the geometry of $Xe{{O}_{3}}$ is pyramidal.
So, the correct answer is “Option C”.
Note: Remember when there is a lone pair present on the central atom, there will be lone pair- bond pair repulsion between the central atom and the other atoms linked to it. This will lead to distortion of geometry. Xenon trioxide is an unstable compound and it is a very powerful oxidizing agent.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE