Answer
Verified
499.2k+ views
Hint: In this problem use some basic properties of factorials and rearrange the terms to get a desired answer.
We have to find the sum of $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$
This can be rewritten as
\[\left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \left( {4 - 1} \right)3! + ...............................\left( {50 - 1} \right)49! + \left( {51 - 1} \right)50!\]
Separating the positive terms and negative terms, we get
\[\left( {2 \times 1! + 3 \times 2! + 4 \times 3! + ..............50 \times 49! + 51 \times 50!} \right) - \left({1! + 2! + 3! + ..............49! + 50!} \right)\]
which can be written as
\[\left( {2! + 3! + 4! + ..............50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!} \right)\]
Adding and subtracting \[1\] we get
\[\left[ {\left( {1! + 2! + 3! + ..............49! + 50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!}\right)} \right] - 1\]
Cancelling the common terms, we will get
\[51! - 1\]
Thus the answer is option (b) $51! - 1$
Note: In this type of problems we can also solve by the summation method by rewriting the equation and using the formula $\sum\limits_{n = 1}^n {\left( {n + 1} \right)! - n! = \left( {n + 1} \right)! - 1}$ directly.
We have to find the sum of $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$
This can be rewritten as
\[\left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \left( {4 - 1} \right)3! + ...............................\left( {50 - 1} \right)49! + \left( {51 - 1} \right)50!\]
Separating the positive terms and negative terms, we get
\[\left( {2 \times 1! + 3 \times 2! + 4 \times 3! + ..............50 \times 49! + 51 \times 50!} \right) - \left({1! + 2! + 3! + ..............49! + 50!} \right)\]
which can be written as
\[\left( {2! + 3! + 4! + ..............50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!} \right)\]
Adding and subtracting \[1\] we get
\[\left[ {\left( {1! + 2! + 3! + ..............49! + 50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!}\right)} \right] - 1\]
Cancelling the common terms, we will get
\[51! - 1\]
Thus the answer is option (b) $51! - 1$
Note: In this type of problems we can also solve by the summation method by rewriting the equation and using the formula $\sum\limits_{n = 1}^n {\left( {n + 1} \right)! - n! = \left( {n + 1} \right)! - 1}$ directly.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE