Answer
Verified
429.9k+ views
Hint: The radioactivity formula is given by:
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
Where $ {{\text{N}}_{0}} $ = initial substance at t = 0
N = substance left at time t
By substituting the given conditions in this equation, the answer can be calculated.
Complete step by step solution:
We know that the formula for radioactive decay is given by:
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $ …… (1)
Now, in time $ {{\text{t}}_{1,}}\dfrac{1}{3} $ rd of the radioactive substance has been designed. So substance left is $ 1-\dfrac{1}{3}=\dfrac{2}{3}\text{rd} $ .
So, $ \text{N}=\dfrac{2}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get,
$ \begin{align}
& =\dfrac{2}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \dfrac{2}{3}\text{= }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \text{ln}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
& 2\cdot 303\text{ log}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
\end{align} $
$ \begin{align}
& {{\text{t}}_{1}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{2}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{1}}=\dfrac{0\cdot 40553817}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
In time $ {{\text{t}}_{2,}}\dfrac{2}{3}\text{rd} $ of the radioactive substance has decayed. So, substance left is $ 1-\dfrac{2}{3}=\dfrac{1}{3}\text{rd} $
So, $ \text{N}=\dfrac{1}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get
$ \dfrac{1}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \dfrac{1}{3}={{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \text{ln}\dfrac{1}{3}-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{\text{2}}} $
$ 2\cdot 303\text{ log}\dfrac{1}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}} $
$ \begin{align}
& {{\text{t}}_{2}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{1}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{2}}=\dfrac{1\cdot 09881025}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
Now, $ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{\left( 1\cdot 09881025-0\cdot 40553817 \right)}{\text{ }\!\!\lambda\!\!\text{ }} $
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{\text{ }\!\!\lambda\!\!\text{ }} $ …. (2)
Now we know that half-life is given by
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 693}{\text{ }\!\!\lambda\!\!\text{ }} $
Or $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{\text{t1/2}} $
as $ \text{t1/2} $ =20 minutes
So $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{20} $ ….. (3)
Putting value of (3) in (2), we get
$ \begin{align}
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{0\cdot 693}\times 20 \\
& \text{ }=20\cdot 0078522 \\
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=20\text{ minutes} \\
\end{align} $
So , the correct option is (C) .
Note:
Radioactive decay is the breakdown of atomic nucleus which results in release of energy and matter from the nucleus.
The law of radioactive decay describes the statistical behaviour of a large number of nuclides, rather than individual ones.
Given a sample, the number of decay events $ -\text{dN} $ in small interval dt is proportional to number of atoms N present, that is:
$ \dfrac{-\text{dN}}{\text{dt}}\alpha \text{ N} $
Or $ \dfrac{-\text{dN}}{\text{N}}=\text{ }\!\!\lambda\!\!\text{ dt} $
Where $ \text{ }\!\!\lambda\!\!\text{ } $ =decay constant. On integrating, we get
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
This equation is called the decay rate equation. The half-life is related to decay constant by the formula
$ \text{t1/2}=\dfrac{\text{ln 2}}{\text{ }\!\!\lambda\!\!\text{ }} $
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
Where $ {{\text{N}}_{0}} $ = initial substance at t = 0
N = substance left at time t
By substituting the given conditions in this equation, the answer can be calculated.
Complete step by step solution:
We know that the formula for radioactive decay is given by:
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $ …… (1)
Now, in time $ {{\text{t}}_{1,}}\dfrac{1}{3} $ rd of the radioactive substance has been designed. So substance left is $ 1-\dfrac{1}{3}=\dfrac{2}{3}\text{rd} $ .
So, $ \text{N}=\dfrac{2}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get,
$ \begin{align}
& =\dfrac{2}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \dfrac{2}{3}\text{= }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \text{ln}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
& 2\cdot 303\text{ log}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
\end{align} $
$ \begin{align}
& {{\text{t}}_{1}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{2}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{1}}=\dfrac{0\cdot 40553817}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
In time $ {{\text{t}}_{2,}}\dfrac{2}{3}\text{rd} $ of the radioactive substance has decayed. So, substance left is $ 1-\dfrac{2}{3}=\dfrac{1}{3}\text{rd} $
So, $ \text{N}=\dfrac{1}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get
$ \dfrac{1}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \dfrac{1}{3}={{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \text{ln}\dfrac{1}{3}-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{\text{2}}} $
$ 2\cdot 303\text{ log}\dfrac{1}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}} $
$ \begin{align}
& {{\text{t}}_{2}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{1}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{2}}=\dfrac{1\cdot 09881025}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
Now, $ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{\left( 1\cdot 09881025-0\cdot 40553817 \right)}{\text{ }\!\!\lambda\!\!\text{ }} $
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{\text{ }\!\!\lambda\!\!\text{ }} $ …. (2)
Now we know that half-life is given by
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 693}{\text{ }\!\!\lambda\!\!\text{ }} $
Or $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{\text{t1/2}} $
as $ \text{t1/2} $ =20 minutes
So $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{20} $ ….. (3)
Putting value of (3) in (2), we get
$ \begin{align}
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{0\cdot 693}\times 20 \\
& \text{ }=20\cdot 0078522 \\
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=20\text{ minutes} \\
\end{align} $
So , the correct option is (C) .
Note:
Radioactive decay is the breakdown of atomic nucleus which results in release of energy and matter from the nucleus.
The law of radioactive decay describes the statistical behaviour of a large number of nuclides, rather than individual ones.
Given a sample, the number of decay events $ -\text{dN} $ in small interval dt is proportional to number of atoms N present, that is:
$ \dfrac{-\text{dN}}{\text{dt}}\alpha \text{ N} $
Or $ \dfrac{-\text{dN}}{\text{N}}=\text{ }\!\!\lambda\!\!\text{ dt} $
Where $ \text{ }\!\!\lambda\!\!\text{ } $ =decay constant. On integrating, we get
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
This equation is called the decay rate equation. The half-life is related to decay constant by the formula
$ \text{t1/2}=\dfrac{\text{ln 2}}{\text{ }\!\!\lambda\!\!\text{ }} $
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE