The harmonic conjugate of $(4,1)$ with respect to the points $(3,2)$ and$( - 1,6)$ is
Answer
Verified
508.2k+ views
Hint: Approach the solution by applying the section formula for given points. Here is the section formula for x coordinate and the section formula for y coordinates is similar as x coordinate.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Recently Updated Pages
Oxidation number of N in NH4NO3is A3 B+5 C3 and +5 class 11 chemistry CBSE
Write the main reasons for the stability of colloidal class 11 chemistry CBSE
One difference between a Formal Letter and an informal class null english null
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE