Answer
Verified
489.9k+ views
Hint: Approach the solution by applying the section formula for given points. Here is the section formula for x coordinate and the section formula for y coordinates is similar as x coordinate.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE