Answer
Verified
499.2k+ views
Hint: Approach the solution by applying the section formula for given points. Here is the section formula for x coordinate and the section formula for y coordinates is similar as x coordinate.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE