Answer
Verified
488.1k+ views
Hint- Here, we will proceed by developing a relation between the height and the radius of the smaller cone obtained after the original cone is cut by a plane. This is achieved with the help of the concept of similar triangles.
Complete step by step answer:
Given, Height of the cone, H = 9 cm
Radius of the base of the cone, R = 3 cm
Now, this cone is cut by a plane parallel to its base so as to divide this original cone into a smaller cone and a frustum. Let the radius of the smaller (upper) circular end of the frustum be r cm and the height of the smaller cone obtained be h cm.
The radius of the larger (lower) circular end of frustum is equal to the radius of the original cone i.e., R = 3 cm
Height of frustum = (H – h) cm = (9-h) cm
In triangles ABC and ADE,
$\angle {\text{A}} = \angle {\text{A}}$ [Common angle in both the triangles]
$\angle {\text{ABC}} = \angle {\text{ADE}}$ [Corresponding angles (because BC is parallel to DE) are equal in measure]
$\angle {\text{ACB}} = \angle {\text{AED}}$ [Corresponding angles (because BC is parallel to DE) are equal in measure]
By AAA (Angle-Angle-Angle) similarity rule, we can say that the triangles ABC and ADE are similar to each other i.e., $\vartriangle {\text{ABC}} \sim \vartriangle {\text{ADE}}$.
For any two similar triangles, the ratio of their corresponding dimensions are always equal.
Using the above concept for the two similar triangles i.e., ABC and ADE, we have
$
\Rightarrow \dfrac{{{\text{AF}}}}{{{\text{AG}}}} = \dfrac{{{\text{BF}}}}{{{\text{DG}}}} \\
\Rightarrow \dfrac{h}{H} = \dfrac{r}{R} \\
\Rightarrow \dfrac{h}{9} = \dfrac{r}{3} \\
\Rightarrow h = \dfrac{{9r}}{3} \\
\Rightarrow h = 3r \\
$
Since, volume of any cone is given by
Volume of the cone = $\dfrac{1}{3}\pi {\left( {{\text{Base radius}}} \right)^2} \times \left( {{\text{Height}}} \right)$
As, we know that volume of the frustum will be given by
Volume of frustum = Volume of original cone – Volume of the smaller cone
$ \Rightarrow $ Volume of frustum = $\dfrac{1}{3}\pi {\left( R \right)^2}\left( H \right) - \dfrac{1}{3}\pi {\left( r \right)^2}\left( h \right)$
By putting R = 3 cm, H = 9 cm, h = 3r and $\pi = \dfrac{{22}}{7}$ in the above equation, we get
$ \Rightarrow $ Volume of frustum = $\dfrac{1}{3}\pi {\left( 3 \right)^2}\left( 9 \right) - \dfrac{1}{3}\pi {\left( r \right)^2}\left( {3r} \right) = \left( {\dfrac{{22}}{7}} \right)\left( 3 \right)\left( 9 \right) - \left( {\dfrac{{22}}{7}} \right){\left( r \right)^2}\left( r \right) = \left( {\dfrac{{22}}{7}} \right)\left( {27 - {r^3}} \right)$
It is given that the volume of frustum is 44 ${\text{c}}{{\text{m}}^3}$
$
\Rightarrow 44 = \left( {\dfrac{{22}}{7}} \right)\left( {27 - {r^3}} \right) \\
\Rightarrow 27 - {r^3} = \dfrac{{44 \times 7}}{{22}} = 2 \times 7 = 14 \\
\Rightarrow {r^3} = 27 - 14 = 13 \\
\Rightarrow r = \sqrt[3]{{13}}{\text{ cm}} \\
$
Therefore, the radius of the upper circular of frustum is $\sqrt[3]{{13}}{\text{ }}$cm.
Hence, option B is correct.
Note- In this particular problem, triangles ABC and ADE are similar triangles so, we can write the ratios of the corresponding sides will be equal i.e.,$\dfrac{{{\text{AB}}}}{{{\text{AD}}}} = \dfrac{{{\text{BC}}}}{{{\text{DE}}}} = \dfrac{{{\text{AC}}}}{{{\text{AE}}}}$. In case of similar triangles, the ratio of the altitudes will be equal to the ratio of the corresponding sides i.e., $\dfrac{{{\text{BC}}}}{{{\text{DE}}}} = \dfrac{{{\text{AF}}}}{{{\text{AG}}}} \Rightarrow \dfrac{{{\text{2BF}}}}{{{\text{2DG}}}} = \dfrac{{{\text{AF}}}}{{{\text{AG}}}} \Rightarrow \dfrac{{{\text{BF}}}}{{{\text{DG}}}} = \dfrac{{{\text{AF}}}}{{{\text{AG}}}}$.
Complete step by step answer:
Given, Height of the cone, H = 9 cm
Radius of the base of the cone, R = 3 cm
Now, this cone is cut by a plane parallel to its base so as to divide this original cone into a smaller cone and a frustum. Let the radius of the smaller (upper) circular end of the frustum be r cm and the height of the smaller cone obtained be h cm.
The radius of the larger (lower) circular end of frustum is equal to the radius of the original cone i.e., R = 3 cm
Height of frustum = (H – h) cm = (9-h) cm
In triangles ABC and ADE,
$\angle {\text{A}} = \angle {\text{A}}$ [Common angle in both the triangles]
$\angle {\text{ABC}} = \angle {\text{ADE}}$ [Corresponding angles (because BC is parallel to DE) are equal in measure]
$\angle {\text{ACB}} = \angle {\text{AED}}$ [Corresponding angles (because BC is parallel to DE) are equal in measure]
By AAA (Angle-Angle-Angle) similarity rule, we can say that the triangles ABC and ADE are similar to each other i.e., $\vartriangle {\text{ABC}} \sim \vartriangle {\text{ADE}}$.
For any two similar triangles, the ratio of their corresponding dimensions are always equal.
Using the above concept for the two similar triangles i.e., ABC and ADE, we have
$
\Rightarrow \dfrac{{{\text{AF}}}}{{{\text{AG}}}} = \dfrac{{{\text{BF}}}}{{{\text{DG}}}} \\
\Rightarrow \dfrac{h}{H} = \dfrac{r}{R} \\
\Rightarrow \dfrac{h}{9} = \dfrac{r}{3} \\
\Rightarrow h = \dfrac{{9r}}{3} \\
\Rightarrow h = 3r \\
$
Since, volume of any cone is given by
Volume of the cone = $\dfrac{1}{3}\pi {\left( {{\text{Base radius}}} \right)^2} \times \left( {{\text{Height}}} \right)$
As, we know that volume of the frustum will be given by
Volume of frustum = Volume of original cone – Volume of the smaller cone
$ \Rightarrow $ Volume of frustum = $\dfrac{1}{3}\pi {\left( R \right)^2}\left( H \right) - \dfrac{1}{3}\pi {\left( r \right)^2}\left( h \right)$
By putting R = 3 cm, H = 9 cm, h = 3r and $\pi = \dfrac{{22}}{7}$ in the above equation, we get
$ \Rightarrow $ Volume of frustum = $\dfrac{1}{3}\pi {\left( 3 \right)^2}\left( 9 \right) - \dfrac{1}{3}\pi {\left( r \right)^2}\left( {3r} \right) = \left( {\dfrac{{22}}{7}} \right)\left( 3 \right)\left( 9 \right) - \left( {\dfrac{{22}}{7}} \right){\left( r \right)^2}\left( r \right) = \left( {\dfrac{{22}}{7}} \right)\left( {27 - {r^3}} \right)$
It is given that the volume of frustum is 44 ${\text{c}}{{\text{m}}^3}$
$
\Rightarrow 44 = \left( {\dfrac{{22}}{7}} \right)\left( {27 - {r^3}} \right) \\
\Rightarrow 27 - {r^3} = \dfrac{{44 \times 7}}{{22}} = 2 \times 7 = 14 \\
\Rightarrow {r^3} = 27 - 14 = 13 \\
\Rightarrow r = \sqrt[3]{{13}}{\text{ cm}} \\
$
Therefore, the radius of the upper circular of frustum is $\sqrt[3]{{13}}{\text{ }}$cm.
Hence, option B is correct.
Note- In this particular problem, triangles ABC and ADE are similar triangles so, we can write the ratios of the corresponding sides will be equal i.e.,$\dfrac{{{\text{AB}}}}{{{\text{AD}}}} = \dfrac{{{\text{BC}}}}{{{\text{DE}}}} = \dfrac{{{\text{AC}}}}{{{\text{AE}}}}$. In case of similar triangles, the ratio of the altitudes will be equal to the ratio of the corresponding sides i.e., $\dfrac{{{\text{BC}}}}{{{\text{DE}}}} = \dfrac{{{\text{AF}}}}{{{\text{AG}}}} \Rightarrow \dfrac{{{\text{2BF}}}}{{{\text{2DG}}}} = \dfrac{{{\text{AF}}}}{{{\text{AG}}}} \Rightarrow \dfrac{{{\text{BF}}}}{{{\text{DG}}}} = \dfrac{{{\text{AF}}}}{{{\text{AG}}}}$.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
A Paragraph on Pollution in about 100-150 Words
Discuss the main reasons for poverty in India