
The identity \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\] can be easily verified by expanding the right hand side.
Using the above identity (or otherwise) answer the following:
Factorize the expression:
\[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\]
(a) \[\left( {p + q + r} \right)\left( {{p^2} + {q^2} + {r^2} - 2\left( {pq + qr + pq} \right)} \right)\]
(b) \[\left( {p + q + r} \right)\left( {2{p^2} + 2{q^2} + 2{r^2} - 3\left( {pq + qr + rp} \right)} \right)\]
(c) \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
(d) None of these
Answer
553.8k+ views
Hint: Here, we need to compute the given expression. We will rewrite the given algebraic identity taking the sum of the numbers as zero. Then, we will simplify the expression using the identity to find the required value of the given expression.
Formula Used:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Complete step-by-step answer:
The given algebraic identity is \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\].
Adding \[3abc\] to both sides of the algebraic identity, we get
\[\Rightarrow {a^3} + {b^3} + {c^3} - 3abc + 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\
\Rightarrow {a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\ \]
Suppose that the sum of the three numbers is 0.
Therefore, we have
\[a + b + c = 0\]
Substituting \[a + b + c = 0\] in the identity, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc\]
We know that when any number or expression is multiplied by 0, the result is 0.
Therefore, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0 + 3abc\]
Adding the terms, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\]
Now, we will find the value of the given expression.
The given expression is \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Let \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\].
We will check the sum of these numbers.
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the expression \[a + b + c\], we get
\[ \Rightarrow a + b + c = p + 2q - 3r + q + 2r - 3p + r + 2p - 3q\]
Adding the like terms in the expression, we get
\[ \Rightarrow a + b + c = 3p + 3q - 3r + 3r - 3p - 3q\]
Pairing the terms of the expression, we get
\[ \Rightarrow a + b + c = \left( {3p - 3p} \right) + \left( {3q - 3q} \right) + \left( {3r - 3r} \right)\]
Subtracting the terms in the parentheses, we get
\[ \Rightarrow a + b + c = 0 + 0 + 0\]
Therefore, we get
\[ \Rightarrow a + b + c = 0\]
We have proved using the algebraic identity that if \[a + b + c = 0\], then \[{a^3} + {b^3} + {c^3} = 3abc\].
Since \[a + b + c = \left( {p + 2q - 3r} \right) + \left( {q + 2r - 3p} \right) + \left( {r + 2p - 3q} \right) = 0\], we can use \[{a^3} + {b^3} + {c^3} = 3abc\].
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the equation \[{a^3} + {b^3} + {c^3} = 3abc\], we get
\[ \Rightarrow {\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3} = 3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
Therefore, we get the value of the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] as \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\].
Thus, the correct option is option (c).
Note: We supposed that the sum of the three numbers in the identity is 0. This is because if the sum of the three numbers is 0, then the right hand side is equal to 0. The sum of the three numbers given in the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] is 0. By rewriting the identity when the sum of the three numbers \[a + b + c = 0\], we have formed a simplified identity to find the value of \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Formula Used:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Complete step-by-step answer:
The given algebraic identity is \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\].
Adding \[3abc\] to both sides of the algebraic identity, we get
\[\Rightarrow {a^3} + {b^3} + {c^3} - 3abc + 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\
\Rightarrow {a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\ \]
Suppose that the sum of the three numbers is 0.
Therefore, we have
\[a + b + c = 0\]
Substituting \[a + b + c = 0\] in the identity, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc\]
We know that when any number or expression is multiplied by 0, the result is 0.
Therefore, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0 + 3abc\]
Adding the terms, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\]
Now, we will find the value of the given expression.
The given expression is \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Let \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\].
We will check the sum of these numbers.
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the expression \[a + b + c\], we get
\[ \Rightarrow a + b + c = p + 2q - 3r + q + 2r - 3p + r + 2p - 3q\]
Adding the like terms in the expression, we get
\[ \Rightarrow a + b + c = 3p + 3q - 3r + 3r - 3p - 3q\]
Pairing the terms of the expression, we get
\[ \Rightarrow a + b + c = \left( {3p - 3p} \right) + \left( {3q - 3q} \right) + \left( {3r - 3r} \right)\]
Subtracting the terms in the parentheses, we get
\[ \Rightarrow a + b + c = 0 + 0 + 0\]
Therefore, we get
\[ \Rightarrow a + b + c = 0\]
We have proved using the algebraic identity that if \[a + b + c = 0\], then \[{a^3} + {b^3} + {c^3} = 3abc\].
Since \[a + b + c = \left( {p + 2q - 3r} \right) + \left( {q + 2r - 3p} \right) + \left( {r + 2p - 3q} \right) = 0\], we can use \[{a^3} + {b^3} + {c^3} = 3abc\].
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the equation \[{a^3} + {b^3} + {c^3} = 3abc\], we get
\[ \Rightarrow {\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3} = 3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
Therefore, we get the value of the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] as \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\].
Thus, the correct option is option (c).
Note: We supposed that the sum of the three numbers in the identity is 0. This is because if the sum of the three numbers is 0, then the right hand side is equal to 0. The sum of the three numbers given in the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] is 0. By rewriting the identity when the sum of the three numbers \[a + b + c = 0\], we have formed a simplified identity to find the value of \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


