![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The incircle of an isosceles triangle ABC, In which AB = AC, touches the sides BC, CA, and AB at Q, R, and P respectively. Prove that BQ = QC.
Answer
506.7k+ views
Hint: Start by drawing a neat diagram followed by using the theorem that the tangents to a circle from a given point outside the circle are equal.
Complete step-by-step answer:
First, we will draw a neat diagram of the situation given in the question.
We know that the tangents drawn from a given point to the circle are equal. And it is clear from the figure that AP and AR are tangents drawn from point A, BP, and BC are tangents from point B, and CQ and CR are tangents from point C.
$\therefore AP=AR.............(i)$
$\therefore BP=BQ...........(ii)$
$\therefore CR=CQ...........(iii)$
Now, as it is mentioned in the question, that $\Delta ABC$ is an isosceles triangle.
$\therefore AB=AC$
Using the diagram, we can write AB as the sum of AP and BP, and AC as the sum of AR and CR.
$AP+BP=AR+CR$
Now substituting the value of AP from equation (i), BP from equation (ii), and CR from equation (iii), we get
$\Rightarrow AR+BQ=AR+CQ$
$\Rightarrow BQ=CQ$
Hence we have proved that BQ = CQ as asked in the question.
Note: The centre of the largest circle that fits inside a triangle is called the incentre and is defined as the meeting point of all three angle bisectors of the triangle. In the above figure, O is the incentre of the $\Delta ABC$ . Always draw a neat diagram before starting problems related to geometry, as it’s easy to visualise a question with a diagram in front of us.
Complete step-by-step answer:
First, we will draw a neat diagram of the situation given in the question.
![seo images](https://www.vedantu.com/question-sets/3e47e966-cb94-46f6-83ab-92c1cfc8377b1096773727927705706.png)
We know that the tangents drawn from a given point to the circle are equal. And it is clear from the figure that AP and AR are tangents drawn from point A, BP, and BC are tangents from point B, and CQ and CR are tangents from point C.
$\therefore AP=AR.............(i)$
$\therefore BP=BQ...........(ii)$
$\therefore CR=CQ...........(iii)$
Now, as it is mentioned in the question, that $\Delta ABC$ is an isosceles triangle.
$\therefore AB=AC$
Using the diagram, we can write AB as the sum of AP and BP, and AC as the sum of AR and CR.
$AP+BP=AR+CR$
Now substituting the value of AP from equation (i), BP from equation (ii), and CR from equation (iii), we get
$\Rightarrow AR+BQ=AR+CQ$
$\Rightarrow BQ=CQ$
Hence we have proved that BQ = CQ as asked in the question.
Note: The centre of the largest circle that fits inside a triangle is called the incentre and is defined as the meeting point of all three angle bisectors of the triangle. In the above figure, O is the incentre of the $\Delta ABC$ . Always draw a neat diagram before starting problems related to geometry, as it’s easy to visualise a question with a diagram in front of us.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write an application to the principal requesting five class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)