Answer
Verified
441.3k+ views
Hint: Here first we will assume \[2x = y\]and then substitute the values of limits so obtained as well the value of the expression inside the integral. Then we will use the following identity:-
\[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
And again substitute the values of limits and the expression inside the integral and finally then we will use the property of definite integrals i.e. \[\int_a^b {f\left( x \right)dx = \int_a^b {f\left( {a + b - x} \right)} } dx\] and then solve the integral to get the desired answer.
Complete step-by-step solution:
The given expression can be written as:-
\[ = \int_0^{\dfrac{1}{2}} {\dfrac{{\ln \left( {1 + 2x} \right)}}{{1 + {{\left( {2x} \right)}^2}}}dx}
\]………………………………………………….(1)
Now let us assume \[2x = y\]
Differentiating both the sides we get:-
\[2\left( {\dfrac{d}{{dx}}\left( x \right)} \right) = \dfrac{d}{{dx}}\left( y \right)\]
Applying the following formula:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
We get:-
\[
2 \times {x^0} = \dfrac{{dy}}{{dx}} \\
\Rightarrow 2 = \dfrac{{dy}}{{dx}}
\]
Evaluating the value of \[dx\] we get:-
\[
2dx = dy \\
\Rightarrow dx = \dfrac{{dy}}{2}
\]
Then putting \[x = 0\] as lower limit we get
\[
y = 2\left( 0 \right) \\
y = 0
\]
Now putting \[x = \dfrac{1}{2}\] as upper limit we get:-
\[
y = 2\left( {\dfrac{1}{2}} \right) \\
\Rightarrow y = 1
\]
Hence the new limits are:-
Lower limit- \[y = 0\]
Upper limit - \[y = 1\]
Hence substituting the new limits and \[2x = y\] and \[dx\] in equation 1 we get:-
\[
= \int_0^1 {\dfrac{{\ln \left( {1 + y} \right)}}{{1 + {y^2}}}\left( {\dfrac{{dy}}{2}} \right)} \\
= \dfrac{1}{2}\int_0^1 {\dfrac{{\ln \left( {1 + y} \right)}}{{1 + {y^2}}}dy} ........................................\left( 2\right)
\]
Now substitute \[y = \tan \theta \]
Differentiating both the sides we get:-
\[\dfrac{d}{{dy}}\left( y \right) = \dfrac{d}{{d\theta }}\left( {\tan \theta } \right)\]
Applying the following formulas:-
\[
\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \\
\dfrac{d}{{dx}}\tan x = {\sec ^2}x
\]
We get:-
\[
{y^0} = {\sec ^2}\theta .\dfrac{{d\theta }}{{dy}} \\
\Rightarrow 1 = {\sec ^2}\theta .\dfrac{{d\theta }}{{dy}}
\]
Evaluating the value of \[dy\] we get:-
\[dy = {\sec ^2}\theta d\theta \]
Then putting \[y = 0\] as lower limit we get
\[\tan \theta = 0\]
Now we know that \[\tan 0 = 0\]
Hence, we get \[\theta = 0\]
Now putting \[y = 1\] as upper limit we get:-
\[\tan \theta = 1\]
Now we know that \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Hence, we get \[\theta = \dfrac{\pi }{4}\]
Hence the new limits are:-
Lower limit- \[\theta = 0\]
Upper limit - \[\theta = \dfrac{\pi }{4}\]
Hence substituting the new limits and \[y = \tan \theta \] and \[dy\] in equation 2 we get:-
\[ = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\dfrac{{\ln \left( {1 + \tan \theta } \right)}}{{1 + {{\left( {\tan\theta } \right)}^2}}}} {\sec ^2}\theta d\theta \]
Now we know that:
\[1 + {\left( {\tan \theta } \right)^2} = {\sec ^2}\theta \]
Hence substituting the value in above expression we get:-
\[ = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\dfrac{{\ln \left( {1 + \tan \theta } \right)}}{{{{\sec }^2}\theta }}}{\sec ^2}\theta d\theta \]
Now cancelling the required terms we get:-
\[ = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \theta } \right)} d\theta \]
Let,
\[I = \int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \theta } \right)} d\theta \]………………………………….(3)
Now we will apply the following property of definite integrals:
\[\int_a^b {f\left( x \right)dx = \int_a^b {f\left( {a + b - x} \right)} } dx\]
Hence on applying this property we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \left( {\dfrac{\pi }{4} + 0 - \theta } \right)}\right)} d\theta \]
Simplifying it further we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \left( {\dfrac{\pi }{4} - \theta } \right)} \right)}d\theta \]
Now we will use the following identity:-
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Applying this identity in above expression we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan\dfrac{\pi }{4}.\tan \theta }}} \right)} d\theta \]
Now we know that:-
\[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Hence putting the value we get:-
\[
I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \left( 1 \right).\tan\theta }}} \right)} d\theta \\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \tan\theta }}} \right)} d\theta \\
\]
Simplifying it further and taking the LCM we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{{1 + \tan \theta + 1 - \tan \theta }}{{1 + \tan\theta }}} \right)} d\theta \]
Cancelling the required terms we get:-
\[
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{{1 + 1}}{{1 + \tan \theta }}} \right)} d\theta
\\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{2}{{1 + \tan \theta }}} \right)}d\theta
\]
Now using the following property of log function:-
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
We get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right) - \ln \left( {1 + \tan \theta } \right)} d\theta \]
Now distributing the integral for both the terms we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta - \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}}{\ln \left( {1 + \tan \theta } \right)} } d\theta \]…………………………………….(4)
Now from equation 3,
$\Rightarrow$ \[I = \int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \theta } \right)} d\theta \]
Hence substituting this value in equation 4 we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta - \dfrac{I}{2}} \]
Simplifying it further we get:-
\[
I + \dfrac{I}{2} = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta } \\
\Rightarrow \dfrac{{3I}}{2} = \dfrac{{\ln \left( 2 \right)}}{2}\int_0^{\dfrac{\pi }{4}} {d\theta }
\]
Now using the following formula for integration:-
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C\]
We get:-
$\Rightarrow$ \[3I = \ln \left( 2 \right)\left[ \theta \right]_0^{\dfrac{\pi }{4}}\]
Now putting the upper limit and lower limit we get:-
$\Rightarrow$ \[3I = \ln \left( 2 \right)\left[ {\dfrac{\pi }{4} - 0} \right]\]
Simplifying it further we get:-
\[
3I = \dfrac{\pi }{4}\ln \left( 2 \right) \\
\Rightarrow I = \dfrac{\pi }{{12}}\ln \left( 2 \right) \\
\]
Hence option C is the correct answer.
Note: Students might make mistakes in using the various formulas and identities used so all the formulas should be correct and they might forget to change the limits according to the substitution done.
Also, students should note that the general formula for integration is:
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C\]
\[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
And again substitute the values of limits and the expression inside the integral and finally then we will use the property of definite integrals i.e. \[\int_a^b {f\left( x \right)dx = \int_a^b {f\left( {a + b - x} \right)} } dx\] and then solve the integral to get the desired answer.
Complete step-by-step solution:
The given expression can be written as:-
\[ = \int_0^{\dfrac{1}{2}} {\dfrac{{\ln \left( {1 + 2x} \right)}}{{1 + {{\left( {2x} \right)}^2}}}dx}
\]………………………………………………….(1)
Now let us assume \[2x = y\]
Differentiating both the sides we get:-
\[2\left( {\dfrac{d}{{dx}}\left( x \right)} \right) = \dfrac{d}{{dx}}\left( y \right)\]
Applying the following formula:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
We get:-
\[
2 \times {x^0} = \dfrac{{dy}}{{dx}} \\
\Rightarrow 2 = \dfrac{{dy}}{{dx}}
\]
Evaluating the value of \[dx\] we get:-
\[
2dx = dy \\
\Rightarrow dx = \dfrac{{dy}}{2}
\]
Then putting \[x = 0\] as lower limit we get
\[
y = 2\left( 0 \right) \\
y = 0
\]
Now putting \[x = \dfrac{1}{2}\] as upper limit we get:-
\[
y = 2\left( {\dfrac{1}{2}} \right) \\
\Rightarrow y = 1
\]
Hence the new limits are:-
Lower limit- \[y = 0\]
Upper limit - \[y = 1\]
Hence substituting the new limits and \[2x = y\] and \[dx\] in equation 1 we get:-
\[
= \int_0^1 {\dfrac{{\ln \left( {1 + y} \right)}}{{1 + {y^2}}}\left( {\dfrac{{dy}}{2}} \right)} \\
= \dfrac{1}{2}\int_0^1 {\dfrac{{\ln \left( {1 + y} \right)}}{{1 + {y^2}}}dy} ........................................\left( 2\right)
\]
Now substitute \[y = \tan \theta \]
Differentiating both the sides we get:-
\[\dfrac{d}{{dy}}\left( y \right) = \dfrac{d}{{d\theta }}\left( {\tan \theta } \right)\]
Applying the following formulas:-
\[
\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \\
\dfrac{d}{{dx}}\tan x = {\sec ^2}x
\]
We get:-
\[
{y^0} = {\sec ^2}\theta .\dfrac{{d\theta }}{{dy}} \\
\Rightarrow 1 = {\sec ^2}\theta .\dfrac{{d\theta }}{{dy}}
\]
Evaluating the value of \[dy\] we get:-
\[dy = {\sec ^2}\theta d\theta \]
Then putting \[y = 0\] as lower limit we get
\[\tan \theta = 0\]
Now we know that \[\tan 0 = 0\]
Hence, we get \[\theta = 0\]
Now putting \[y = 1\] as upper limit we get:-
\[\tan \theta = 1\]
Now we know that \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Hence, we get \[\theta = \dfrac{\pi }{4}\]
Hence the new limits are:-
Lower limit- \[\theta = 0\]
Upper limit - \[\theta = \dfrac{\pi }{4}\]
Hence substituting the new limits and \[y = \tan \theta \] and \[dy\] in equation 2 we get:-
\[ = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\dfrac{{\ln \left( {1 + \tan \theta } \right)}}{{1 + {{\left( {\tan\theta } \right)}^2}}}} {\sec ^2}\theta d\theta \]
Now we know that:
\[1 + {\left( {\tan \theta } \right)^2} = {\sec ^2}\theta \]
Hence substituting the value in above expression we get:-
\[ = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\dfrac{{\ln \left( {1 + \tan \theta } \right)}}{{{{\sec }^2}\theta }}}{\sec ^2}\theta d\theta \]
Now cancelling the required terms we get:-
\[ = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \theta } \right)} d\theta \]
Let,
\[I = \int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \theta } \right)} d\theta \]………………………………….(3)
Now we will apply the following property of definite integrals:
\[\int_a^b {f\left( x \right)dx = \int_a^b {f\left( {a + b - x} \right)} } dx\]
Hence on applying this property we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \left( {\dfrac{\pi }{4} + 0 - \theta } \right)}\right)} d\theta \]
Simplifying it further we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \left( {\dfrac{\pi }{4} - \theta } \right)} \right)}d\theta \]
Now we will use the following identity:-
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Applying this identity in above expression we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan\dfrac{\pi }{4}.\tan \theta }}} \right)} d\theta \]
Now we know that:-
\[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Hence putting the value we get:-
\[
I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \left( 1 \right).\tan\theta }}} \right)} d\theta \\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \tan\theta }}} \right)} d\theta \\
\]
Simplifying it further and taking the LCM we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{{1 + \tan \theta + 1 - \tan \theta }}{{1 + \tan\theta }}} \right)} d\theta \]
Cancelling the required terms we get:-
\[
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{{1 + 1}}{{1 + \tan \theta }}} \right)} d\theta
\\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{2}{{1 + \tan \theta }}} \right)}d\theta
\]
Now using the following property of log function:-
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
We get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right) - \ln \left( {1 + \tan \theta } \right)} d\theta \]
Now distributing the integral for both the terms we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta - \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}}{\ln \left( {1 + \tan \theta } \right)} } d\theta \]…………………………………….(4)
Now from equation 3,
$\Rightarrow$ \[I = \int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \tan \theta } \right)} d\theta \]
Hence substituting this value in equation 4 we get:-
$\Rightarrow$ \[I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta - \dfrac{I}{2}} \]
Simplifying it further we get:-
\[
I + \dfrac{I}{2} = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta } \\
\Rightarrow \dfrac{{3I}}{2} = \dfrac{{\ln \left( 2 \right)}}{2}\int_0^{\dfrac{\pi }{4}} {d\theta }
\]
Now using the following formula for integration:-
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C\]
We get:-
$\Rightarrow$ \[3I = \ln \left( 2 \right)\left[ \theta \right]_0^{\dfrac{\pi }{4}}\]
Now putting the upper limit and lower limit we get:-
$\Rightarrow$ \[3I = \ln \left( 2 \right)\left[ {\dfrac{\pi }{4} - 0} \right]\]
Simplifying it further we get:-
\[
3I = \dfrac{\pi }{4}\ln \left( 2 \right) \\
\Rightarrow I = \dfrac{\pi }{{12}}\ln \left( 2 \right) \\
\]
Hence option C is the correct answer.
Note: Students might make mistakes in using the various formulas and identities used so all the formulas should be correct and they might forget to change the limits according to the substitution done.
Also, students should note that the general formula for integration is:
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE