
The integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is
A. 197
B. 196
C. 175
D. 176
Answer
492k+ views
Hint: First of all, consider the given binomial as the sum of integral part and fractional part. Then add up this binomial with its contemporary binomial to find the integral part of the given binomial, use the binomial theorem for the expansion of the binomials. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
{\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
{\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
\Rightarrow I + F + f = 198 \\
{\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
\Rightarrow 0 + 0 < F + f < 1 + 1 \\
\Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
\Rightarrow I + 1 = 198 \\
\therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197
Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.
Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
{\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
{\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
\Rightarrow I + F + f = 198 \\
{\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
\Rightarrow 0 + 0 < F + f < 1 + 1 \\
\Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
\Rightarrow I + 1 = 198 \\
\therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197
Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
When was Shivaji born A 1632 B 1627 C 1678 D 1634 class 10 social science CBSE

For Frost what do fire and ice stand for Here are some class 10 english CBSE

What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE

List three states in India where earthquakes are more class 10 physics CBSE
