
The integrating factor of the differential equation $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$ is
[a] $\dfrac{1}{{{y}^{2}}-1}$
[b] $\dfrac{1}{\sqrt{{{y}^{2}}-1}}$
[c] $\dfrac{1}{1-{{y}^{2}}}$
[d] $\dfrac{1}{\sqrt{1-{{y}^{2}}}}$
Answer
618.9k+ views
Hint: Integrating factor of a differential equation is a term with which we should multiply the differential equation so that it becomes exact. An exact differential equation is the differential equation $Mdx+Ndy=0$ which satisfies the Euler criterion for exactness, i.e. $\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$. In a linear order differential equation, i.e. equation of the form $\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)$ the integrating factor $IF={{e}^{\int{P\left( x \right)dx}}}$. Convert the above differential equation in the exact form by dividing on both sides by $1-{{y}^{2}}$ and find the integrating factor using the above formula for IF.
Complete step by step solution:
We have $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$
Dividing both sides by $1-{{y}^{2}}$, we get
$\dfrac{1-{{y}^{2}}}{1-{{y}^{2}}}\dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$, which is of the form $\dfrac{dx}{dy}+P\left( y \right)x=Q\left( y \right)$, where $P\left( y \right)=\dfrac{y}{1-{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{ay}{1-{{y}^{2}}}$
We have Integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}$.
Let $I=\int{P\left( y \right)dy}$
So, we have
$I=\int{\dfrac{y}{1-{{y}^{2}}}dy}$
Put $1-{{y}^{2}}=z$
Differentiating both sides, we get
\[\begin{align}
& -2ydy=dz \\
& \Rightarrow ydy=-\dfrac{dz}{2} \\
\end{align}\]
So, we have
\[\begin{align}
& I=\int{\dfrac{-dz}{2z}} \\
& =-\dfrac{1}{2}\int{\dfrac{dz}{z}} \\
\end{align}\]
We know that $\int{\dfrac{dx}{x}=\ln x+c}$
Using, we get
$I=-\dfrac{1}{2}\ln z$
Returning to the original variable, we get
$\begin{align}
& I=-\dfrac{1}{2}\ln \left( \left| 1-{{y}^{2}} \right| \right) \\
& \Rightarrow I=\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right) \\
\end{align}$
Hence the integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}={{e}^{I}}={{e}^{\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right)}}$
We know that ${{e}^{\ln x}}=x$
Using we get
$IF=\dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}}$.
Hence, options [b] and [d] are correct.
Note: [1]A differential equation when in exact form can be written in the form $du=dv$.
In a Linear differential equation when multiplied by Integrating factor we have $u=y\cdot IF$ and $v=\int{Q\left( x \right)\cdot IFdx}$.
[2] Euler’s criterion for exactness is a direct result of the fact $\dfrac{\partial f}{\partial x\partial y}=\dfrac{\partial f}{\partial y\partial x}$ .
[3] Sometimes, the following identities help in converting a differential equation in the exact form:
[a] $xdy+ydx=d(xy)$
[b] $dx+dy=d(x+y)$
[c] $\dfrac{xdy-ydx}{{{x}^{2}}}=d\left( \dfrac{y}{x} \right)$
[d] $\dfrac{dx}{x}=d\left( \ln x \right)$
[e] $m{{x}^{m-1}}{{y}^{n}}+n{{x}^{m}}{{y}^{n-1}}=d\left( {{x}^{m}}{{y}^{n}} \right)$
Complete step by step solution:
We have $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$
Dividing both sides by $1-{{y}^{2}}$, we get
$\dfrac{1-{{y}^{2}}}{1-{{y}^{2}}}\dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$, which is of the form $\dfrac{dx}{dy}+P\left( y \right)x=Q\left( y \right)$, where $P\left( y \right)=\dfrac{y}{1-{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{ay}{1-{{y}^{2}}}$
We have Integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}$.
Let $I=\int{P\left( y \right)dy}$
So, we have
$I=\int{\dfrac{y}{1-{{y}^{2}}}dy}$
Put $1-{{y}^{2}}=z$
Differentiating both sides, we get
\[\begin{align}
& -2ydy=dz \\
& \Rightarrow ydy=-\dfrac{dz}{2} \\
\end{align}\]
So, we have
\[\begin{align}
& I=\int{\dfrac{-dz}{2z}} \\
& =-\dfrac{1}{2}\int{\dfrac{dz}{z}} \\
\end{align}\]
We know that $\int{\dfrac{dx}{x}=\ln x+c}$
Using, we get
$I=-\dfrac{1}{2}\ln z$
Returning to the original variable, we get
$\begin{align}
& I=-\dfrac{1}{2}\ln \left( \left| 1-{{y}^{2}} \right| \right) \\
& \Rightarrow I=\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right) \\
\end{align}$
Hence the integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}={{e}^{I}}={{e}^{\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right)}}$
We know that ${{e}^{\ln x}}=x$
Using we get
$IF=\dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}}$.
Hence, options [b] and [d] are correct.
Note: [1]A differential equation when in exact form can be written in the form $du=dv$.
In a Linear differential equation when multiplied by Integrating factor we have $u=y\cdot IF$ and $v=\int{Q\left( x \right)\cdot IFdx}$.
[2] Euler’s criterion for exactness is a direct result of the fact $\dfrac{\partial f}{\partial x\partial y}=\dfrac{\partial f}{\partial y\partial x}$ .
[3] Sometimes, the following identities help in converting a differential equation in the exact form:
[a] $xdy+ydx=d(xy)$
[b] $dx+dy=d(x+y)$
[c] $\dfrac{xdy-ydx}{{{x}^{2}}}=d\left( \dfrac{y}{x} \right)$
[d] $\dfrac{dx}{x}=d\left( \ln x \right)$
[e] $m{{x}^{m-1}}{{y}^{n}}+n{{x}^{m}}{{y}^{n-1}}=d\left( {{x}^{m}}{{y}^{n}} \right)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

