Answer
Verified
496.8k+ views
Hint: Integrating factor of a differential equation is a term with which we should multiply the differential equation so that it becomes exact. An exact differential equation is the differential equation $Mdx+Ndy=0$ which satisfies the Euler criterion for exactness, i.e. $\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$. In a linear order differential equation, i.e. equation of the form $\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)$ the integrating factor $IF={{e}^{\int{P\left( x \right)dx}}}$. Convert the above differential equation in the exact form by dividing on both sides by $1-{{y}^{2}}$ and find the integrating factor using the above formula for IF.
Complete step by step solution:
We have $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$
Dividing both sides by $1-{{y}^{2}}$, we get
$\dfrac{1-{{y}^{2}}}{1-{{y}^{2}}}\dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$, which is of the form $\dfrac{dx}{dy}+P\left( y \right)x=Q\left( y \right)$, where $P\left( y \right)=\dfrac{y}{1-{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{ay}{1-{{y}^{2}}}$
We have Integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}$.
Let $I=\int{P\left( y \right)dy}$
So, we have
$I=\int{\dfrac{y}{1-{{y}^{2}}}dy}$
Put $1-{{y}^{2}}=z$
Differentiating both sides, we get
\[\begin{align}
& -2ydy=dz \\
& \Rightarrow ydy=-\dfrac{dz}{2} \\
\end{align}\]
So, we have
\[\begin{align}
& I=\int{\dfrac{-dz}{2z}} \\
& =-\dfrac{1}{2}\int{\dfrac{dz}{z}} \\
\end{align}\]
We know that $\int{\dfrac{dx}{x}=\ln x+c}$
Using, we get
$I=-\dfrac{1}{2}\ln z$
Returning to the original variable, we get
$\begin{align}
& I=-\dfrac{1}{2}\ln \left( \left| 1-{{y}^{2}} \right| \right) \\
& \Rightarrow I=\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right) \\
\end{align}$
Hence the integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}={{e}^{I}}={{e}^{\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right)}}$
We know that ${{e}^{\ln x}}=x$
Using we get
$IF=\dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}}$.
Hence, options [b] and [d] are correct.
Note: [1]A differential equation when in exact form can be written in the form $du=dv$.
In a Linear differential equation when multiplied by Integrating factor we have $u=y\cdot IF$ and $v=\int{Q\left( x \right)\cdot IFdx}$.
[2] Euler’s criterion for exactness is a direct result of the fact $\dfrac{\partial f}{\partial x\partial y}=\dfrac{\partial f}{\partial y\partial x}$ .
[3] Sometimes, the following identities help in converting a differential equation in the exact form:
[a] $xdy+ydx=d(xy)$
[b] $dx+dy=d(x+y)$
[c] $\dfrac{xdy-ydx}{{{x}^{2}}}=d\left( \dfrac{y}{x} \right)$
[d] $\dfrac{dx}{x}=d\left( \ln x \right)$
[e] $m{{x}^{m-1}}{{y}^{n}}+n{{x}^{m}}{{y}^{n-1}}=d\left( {{x}^{m}}{{y}^{n}} \right)$
Complete step by step solution:
We have $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$
Dividing both sides by $1-{{y}^{2}}$, we get
$\dfrac{1-{{y}^{2}}}{1-{{y}^{2}}}\dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$, which is of the form $\dfrac{dx}{dy}+P\left( y \right)x=Q\left( y \right)$, where $P\left( y \right)=\dfrac{y}{1-{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{ay}{1-{{y}^{2}}}$
We have Integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}$.
Let $I=\int{P\left( y \right)dy}$
So, we have
$I=\int{\dfrac{y}{1-{{y}^{2}}}dy}$
Put $1-{{y}^{2}}=z$
Differentiating both sides, we get
\[\begin{align}
& -2ydy=dz \\
& \Rightarrow ydy=-\dfrac{dz}{2} \\
\end{align}\]
So, we have
\[\begin{align}
& I=\int{\dfrac{-dz}{2z}} \\
& =-\dfrac{1}{2}\int{\dfrac{dz}{z}} \\
\end{align}\]
We know that $\int{\dfrac{dx}{x}=\ln x+c}$
Using, we get
$I=-\dfrac{1}{2}\ln z$
Returning to the original variable, we get
$\begin{align}
& I=-\dfrac{1}{2}\ln \left( \left| 1-{{y}^{2}} \right| \right) \\
& \Rightarrow I=\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right) \\
\end{align}$
Hence the integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}={{e}^{I}}={{e}^{\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right)}}$
We know that ${{e}^{\ln x}}=x$
Using we get
$IF=\dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}}$.
Hence, options [b] and [d] are correct.
Note: [1]A differential equation when in exact form can be written in the form $du=dv$.
In a Linear differential equation when multiplied by Integrating factor we have $u=y\cdot IF$ and $v=\int{Q\left( x \right)\cdot IFdx}$.
[2] Euler’s criterion for exactness is a direct result of the fact $\dfrac{\partial f}{\partial x\partial y}=\dfrac{\partial f}{\partial y\partial x}$ .
[3] Sometimes, the following identities help in converting a differential equation in the exact form:
[a] $xdy+ydx=d(xy)$
[b] $dx+dy=d(x+y)$
[c] $\dfrac{xdy-ydx}{{{x}^{2}}}=d\left( \dfrac{y}{x} \right)$
[d] $\dfrac{dx}{x}=d\left( \ln x \right)$
[e] $m{{x}^{m-1}}{{y}^{n}}+n{{x}^{m}}{{y}^{n-1}}=d\left( {{x}^{m}}{{y}^{n}} \right)$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE