Answer
Verified
459k+ views
Hint: The dependence of ionic mobility on the size of hydrated ion can be used to deduce the order of increasing ionic mobility for the given ions
Step by step answer:
We have $7$ horizontal periods and $18$ vertical groups as per periodic classification of elements in the modern periodic table. This classification has helped us in establishing some general trends for properties of elements such as atomic radius, ionization enthalpy, ionic radius, hydration enthalpy and many more.
Here, we will have a look at the hydration enthalpy for elements in a group. We know that size increases down a group as additional shells are being added up. This leads to decrease in the hydration enthalpy because the two are inversely proportional to each other. So, we can say that the topmost element would have the smallest size and the highest hydration enthalpy.
Now, we know that ionic mobility is related to the ease or speed with which an ion can move in a solution. We can add to this that highly solvated ions have a large number of solvent molecules around them and thus have less mobility. So, hydration enthalpy is inversely proportional to the ionic mobility as well.
Now, as we consider the given ions, all of them belong to the first group. They can be arranged in the increasing order of ionic radius as follows:
\[{\rm{L}}{{\rm{i}}^ + } < {\rm{N}}{{\rm{a}}^ + } < {{\rm{K}}^ + } < {\rm{R}}{{\rm{b}}^ + }\]
Depending on the ionic size, we can arrange them in the increasing order of hydration enthalpy as follows:
\[{\rm{R}}{{\rm{b}}^ + } < {{\rm{K}}^ + } < {\rm{N}}{{\rm{a}}^ + } < {\rm{L}}{{\rm{i}}^ + }\]
Finally, they can be arranged in the increasing order of ionic mobility which is inversely proportional to the hydration enthalpy as follows:
\[{\rm{L}}{{\rm{i}}^ + } < {\rm{N}}{{\rm{a}}^ + } < {{\rm{K}}^ + } < {\rm{R}}{{\rm{b}}^ + }\]
Hence, \[{\rm{R}}{{\rm{b}}^ + }\] has the maximum ionic mobility which makes option B to be the correct one.
Note: Most of the trends in the properties are inter-related so we can use as per our convenience. For example, effective nuclear charge down a group can be related to its tendency to attract more solvent particles that would make it too big/heavy to move quickly.
Step by step answer:
We have $7$ horizontal periods and $18$ vertical groups as per periodic classification of elements in the modern periodic table. This classification has helped us in establishing some general trends for properties of elements such as atomic radius, ionization enthalpy, ionic radius, hydration enthalpy and many more.
Here, we will have a look at the hydration enthalpy for elements in a group. We know that size increases down a group as additional shells are being added up. This leads to decrease in the hydration enthalpy because the two are inversely proportional to each other. So, we can say that the topmost element would have the smallest size and the highest hydration enthalpy.
Now, we know that ionic mobility is related to the ease or speed with which an ion can move in a solution. We can add to this that highly solvated ions have a large number of solvent molecules around them and thus have less mobility. So, hydration enthalpy is inversely proportional to the ionic mobility as well.
Now, as we consider the given ions, all of them belong to the first group. They can be arranged in the increasing order of ionic radius as follows:
\[{\rm{L}}{{\rm{i}}^ + } < {\rm{N}}{{\rm{a}}^ + } < {{\rm{K}}^ + } < {\rm{R}}{{\rm{b}}^ + }\]
Depending on the ionic size, we can arrange them in the increasing order of hydration enthalpy as follows:
\[{\rm{R}}{{\rm{b}}^ + } < {{\rm{K}}^ + } < {\rm{N}}{{\rm{a}}^ + } < {\rm{L}}{{\rm{i}}^ + }\]
Finally, they can be arranged in the increasing order of ionic mobility which is inversely proportional to the hydration enthalpy as follows:
\[{\rm{L}}{{\rm{i}}^ + } < {\rm{N}}{{\rm{a}}^ + } < {{\rm{K}}^ + } < {\rm{R}}{{\rm{b}}^ + }\]
Hence, \[{\rm{R}}{{\rm{b}}^ + }\] has the maximum ionic mobility which makes option B to be the correct one.
Note: Most of the trends in the properties are inter-related so we can use as per our convenience. For example, effective nuclear charge down a group can be related to its tendency to attract more solvent particles that would make it too big/heavy to move quickly.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE