Answer
Verified
441.3k+ views
Hint:This question gives the knowledge about ionization enthalpy. The ionization enthalpy is defined as the minimum amount of energy required to remove the electron from the isolated gaseous atom in its ground state.
Formula used:
The formula used to determine the energy of an electron in a particular orbit is as follows:
${E_n} = \dfrac{{ - 1312}}{{{n^2}}}$
Where ${E_n}$ is the energy at the \[{n^{th}}\] level and $n$ is the orbit.
Complete step by step answer:
The ionization enthalpy is defined as the minimum amount of energy required to remove the electron from the isolated gaseous atom in its ground state.
Now we will determine the energy of an electron in the first orbit as follows:
$ \Rightarrow {E_n} = \dfrac{{ - 1312}}{{{n^2}}}$
Substitute $n$ as $1$ in the above formula.
$ \Rightarrow {E_1} = \dfrac{{ - 1312}}{{{1^2}}}$
On simplifying the above equation we get,
$ \Rightarrow {E_1} = - 1312$
The energy of the first orbit is $ - 1312kJ/mol$.
Now we will determine the energy of an electron in the second orbit as follows:
$ \Rightarrow {E_n} = \dfrac{{ - 1312}}{{{n^2}}}$
Substitute $n$ as $2$ in the above formula.
$ \Rightarrow {E_2} = \dfrac{{ - 1312}}{{{2^2}}}$
On simplifying the above equation we get,
$ \Rightarrow {E_2} = - 328$
The energy of the first orbit is $ - 328kJ/mol$.
So, the energy required by the excited electron is the difference between these two orbits.
Therefore, the energy required by the excited electron is $ - 984kJ/mol$. And in terms of joules the energy required is $9.84 \times {10^5}J/Mmol$.
Hence, option $B$ is the correct option.
Note:
The ionization enthalpy is defined as the minimum amount of energy required to remove the electron from the isolated gaseous atom in its ground state. Periodic table is basically the tabular representation of elements, which are organized by electronic configuration, atomic number and repeated chemical properties. Periodic table consists of seven rows and eighteen groups. In rows, the elements are organized from left to right and in groups, elements are organized from top to bottom. In total there are $118$ elements present in the periodic table. . In the periodic table, ionization energy decreases the group.
Formula used:
The formula used to determine the energy of an electron in a particular orbit is as follows:
${E_n} = \dfrac{{ - 1312}}{{{n^2}}}$
Where ${E_n}$ is the energy at the \[{n^{th}}\] level and $n$ is the orbit.
Complete step by step answer:
The ionization enthalpy is defined as the minimum amount of energy required to remove the electron from the isolated gaseous atom in its ground state.
Now we will determine the energy of an electron in the first orbit as follows:
$ \Rightarrow {E_n} = \dfrac{{ - 1312}}{{{n^2}}}$
Substitute $n$ as $1$ in the above formula.
$ \Rightarrow {E_1} = \dfrac{{ - 1312}}{{{1^2}}}$
On simplifying the above equation we get,
$ \Rightarrow {E_1} = - 1312$
The energy of the first orbit is $ - 1312kJ/mol$.
Now we will determine the energy of an electron in the second orbit as follows:
$ \Rightarrow {E_n} = \dfrac{{ - 1312}}{{{n^2}}}$
Substitute $n$ as $2$ in the above formula.
$ \Rightarrow {E_2} = \dfrac{{ - 1312}}{{{2^2}}}$
On simplifying the above equation we get,
$ \Rightarrow {E_2} = - 328$
The energy of the first orbit is $ - 328kJ/mol$.
So, the energy required by the excited electron is the difference between these two orbits.
Therefore, the energy required by the excited electron is $ - 984kJ/mol$. And in terms of joules the energy required is $9.84 \times {10^5}J/Mmol$.
Hence, option $B$ is the correct option.
Note:
The ionization enthalpy is defined as the minimum amount of energy required to remove the electron from the isolated gaseous atom in its ground state. Periodic table is basically the tabular representation of elements, which are organized by electronic configuration, atomic number and repeated chemical properties. Periodic table consists of seven rows and eighteen groups. In rows, the elements are organized from left to right and in groups, elements are organized from top to bottom. In total there are $118$ elements present in the periodic table. . In the periodic table, ionization energy decreases the group.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE