Answer
Verified
450.3k+ views
Hint: We know that the equation for the adiabatic bulk modulus is \[{B_{adiabatic}} = \gamma p\] and the equation for the isothermal bulk modulus is \[{B_{isothermal}} = p\] . Now divide these equations to get the following relation \[{B_{adiabatic}} = \gamma \times {B_{isothermal}}\] and then calculate the value of \[{B_{adiabatic}}\] .
Complete answer:
Before moving on to the mathematical calculations let’s first discuss isothermal bulk modulus and adiabatic bulk modulus.
Adiabatic process - Without moving heat or mass between a thermodynamic system and its environment, an adiabatic process happens. Unlike an isothermal cycle, an adiabatic process only transfers energy to the atmosphere as a task.
Isothermal process - An isothermal process is a system shift in which the temperature stays constant. This usually happens when a system is in contact with an outside thermal reservoir and the system adjusts slowly enough to allow the system to continue to adapt through heat exchange to the temperature of the reservoir.
Isothermal bulk modulus – It is the ratio of change in pressure \[\left( {\Delta p} \right)\] to the change in the volume \[\left( {\dfrac{{\Delta V}}{V}} \right)\] at gas temperature \[T\] .
\[{B_{isothermal}} = - \dfrac{{\Delta p}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}}\]
But as in an isothermal process, the volume does not change
\[{B_{isothermal}} = p\] (Equation 1)
Adiabatic process – It is the ratio of change in pressure to the change in volume when the process is adiabatic.
\[{B_{adiabatic}} = - \dfrac{{\Delta p}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = \gamma p\] (Equation 2)
Here, \[\gamma = \] The ratio of specific heat
Dividing equation 2 by equation 1, we get
\[\dfrac{{{B_{adiabatic}}}}{{{B_{isothermal}}}} = \dfrac{{\gamma p}}{p}\]
\[\dfrac{{{B_{adiabatic}}}}{{{B_{isothermal}}}} = \gamma \]
\[{B_{adiabatic}} = \gamma \times {B_{isothermal}}\]
\[{B_{adiabatic}} = 1.4 \times 1.5 \times {10^5} = 2.1 \times {10^5}N{m^{ - 2}}\]
So, the correct answer is “Option B”.
Note:
The bulk modulus is based on Hooke’s law. According to Hooke’s law, the strain in a material is directly proportional to the stress applied.
\[\dfrac{{Strain}}{{Stress}} = B\]
Here, \[B = \] Bulk’s modulus
The above equation is just for the volumetric extension of material, we have different equations for the areal and linear extension of a material.
Complete answer:
Before moving on to the mathematical calculations let’s first discuss isothermal bulk modulus and adiabatic bulk modulus.
Adiabatic process - Without moving heat or mass between a thermodynamic system and its environment, an adiabatic process happens. Unlike an isothermal cycle, an adiabatic process only transfers energy to the atmosphere as a task.
Isothermal process - An isothermal process is a system shift in which the temperature stays constant. This usually happens when a system is in contact with an outside thermal reservoir and the system adjusts slowly enough to allow the system to continue to adapt through heat exchange to the temperature of the reservoir.
Isothermal bulk modulus – It is the ratio of change in pressure \[\left( {\Delta p} \right)\] to the change in the volume \[\left( {\dfrac{{\Delta V}}{V}} \right)\] at gas temperature \[T\] .
\[{B_{isothermal}} = - \dfrac{{\Delta p}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}}\]
But as in an isothermal process, the volume does not change
\[{B_{isothermal}} = p\] (Equation 1)
Adiabatic process – It is the ratio of change in pressure to the change in volume when the process is adiabatic.
\[{B_{adiabatic}} = - \dfrac{{\Delta p}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = \gamma p\] (Equation 2)
Here, \[\gamma = \] The ratio of specific heat
Dividing equation 2 by equation 1, we get
\[\dfrac{{{B_{adiabatic}}}}{{{B_{isothermal}}}} = \dfrac{{\gamma p}}{p}\]
\[\dfrac{{{B_{adiabatic}}}}{{{B_{isothermal}}}} = \gamma \]
\[{B_{adiabatic}} = \gamma \times {B_{isothermal}}\]
\[{B_{adiabatic}} = 1.4 \times 1.5 \times {10^5} = 2.1 \times {10^5}N{m^{ - 2}}\]
So, the correct answer is “Option B”.
Note:
The bulk modulus is based on Hooke’s law. According to Hooke’s law, the strain in a material is directly proportional to the stress applied.
\[\dfrac{{Strain}}{{Stress}} = B\]
Here, \[B = \] Bulk’s modulus
The above equation is just for the volumetric extension of material, we have different equations for the areal and linear extension of a material.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE