Answer
Verified
442.8k+ views
Hint: In this question, to find number of isotopes of $C - 14$ isotope in $12g$ carbon sample find out the average atomic mass of the carbon sample and then find the $2\% $ of the average atomic mass of the sample.
Complete step by step answer:
In this question, the isotopes of an element are those elements which have the same atomic number but have different atomic masses. The isotopes have the same number of protons but different number of neutrons in each atom. The carbon has $15$ known isotopes among them most common isotopes are carbon$ - 12$, carbon$ - 13$ and carbon$ - 14$.
The average atomic mass of the sample consisting of isotopes can be given as:
${\text{Average Atomic mass = (MM}}{{\text{)}}_{12}} \times {\text{ (Abundance}}{{\text{)}}_{12}}{\text{ + (MM}}{{\text{)}}_{14}} \times {\text{ (Abundance}}{{\text{)}}_{14}}$ $ - (1)$
Where, ${{\text{(MM)}}_{12}} = $ molecular mass of carbon$ - 12$ (that is $12g$)
${{\text{(MM)}}_{14}} = $ molecular mass of carbon$ - 14$ (that is $14g$)
${{\text{(Abundance)}}_{12}} = $ Abundance of carbon$ - 12$ in the sample (given in question $98\% $)
${{\text{(Abundance)}}_{14}} = $ Abundance of carbon$ - 14$ in the sample (given in question $2\% $)
Now, by putting all values in equation $ - (1)$ we get,
$
{\text{Average atomic mass = 12}} \times \dfrac{{98}}{{100}}{\text{ + 14}} \times \dfrac{2}{{100}} \\
= \dfrac{{1176 \times 28}}{{100}} \\
= \dfrac{{1204}}{{100}} \\
= 12.04g \\
$
As we know that carbon sample contains $2\% $ of carbon$ - 14$.
That is $100g$ of carbon sample contains $2g$ of carbon$ - 14$
So, $1g$ of carbon sample contains $\dfrac{2}{{100}}g$ of carbon$ - 14$
Therefore, $12.04 g$ of carbon sample contains $\dfrac{2}{{100}} \times 12.04 g$ of carbon$ - 14$.
That is, $12.04g$ of carbon sample contains $0.2408g$ of carbon$ - 14$.
Now, as we know that for any atom,
$1mol = {N_A} = 6.02 \times {10^{23}}{\text{ atoms}} = $ molecular mass of atom (that is $14$ for carbon-$14$)
$
14g = 6.02 \times {10^{23}}{\text{ atoms}} \\
{\text{1g}} = \dfrac{{6.02 \times {{10}^{23}}}}{{14}}{\text{ atoms}} \\
$
For $0.2408g = \dfrac{{6.02 \times {{10}^{23}}}}{{14}} \times 0.2408{\text{ atoms}}$
$ = 1.032 \times {10^{22}}{\text{ atoms}}$
Therefore, the number of atoms of carbon$ - 14$ isotopes is $ = 1.032 \times {10^{22}}{\text{ atoms}}$
Hence, option A.) is the correct answer.
Note:
Always remember that if there is a sample given which includes the isotopes of an element then to find average atomic mass we will not just add the molecular mass of the but we will add the product of the molecular mass and abundance for each isotope as the formula is given above.
Complete step by step answer:
In this question, the isotopes of an element are those elements which have the same atomic number but have different atomic masses. The isotopes have the same number of protons but different number of neutrons in each atom. The carbon has $15$ known isotopes among them most common isotopes are carbon$ - 12$, carbon$ - 13$ and carbon$ - 14$.
The average atomic mass of the sample consisting of isotopes can be given as:
${\text{Average Atomic mass = (MM}}{{\text{)}}_{12}} \times {\text{ (Abundance}}{{\text{)}}_{12}}{\text{ + (MM}}{{\text{)}}_{14}} \times {\text{ (Abundance}}{{\text{)}}_{14}}$ $ - (1)$
Where, ${{\text{(MM)}}_{12}} = $ molecular mass of carbon$ - 12$ (that is $12g$)
${{\text{(MM)}}_{14}} = $ molecular mass of carbon$ - 14$ (that is $14g$)
${{\text{(Abundance)}}_{12}} = $ Abundance of carbon$ - 12$ in the sample (given in question $98\% $)
${{\text{(Abundance)}}_{14}} = $ Abundance of carbon$ - 14$ in the sample (given in question $2\% $)
Now, by putting all values in equation $ - (1)$ we get,
$
{\text{Average atomic mass = 12}} \times \dfrac{{98}}{{100}}{\text{ + 14}} \times \dfrac{2}{{100}} \\
= \dfrac{{1176 \times 28}}{{100}} \\
= \dfrac{{1204}}{{100}} \\
= 12.04g \\
$
As we know that carbon sample contains $2\% $ of carbon$ - 14$.
That is $100g$ of carbon sample contains $2g$ of carbon$ - 14$
So, $1g$ of carbon sample contains $\dfrac{2}{{100}}g$ of carbon$ - 14$
Therefore, $12.04 g$ of carbon sample contains $\dfrac{2}{{100}} \times 12.04 g$ of carbon$ - 14$.
That is, $12.04g$ of carbon sample contains $0.2408g$ of carbon$ - 14$.
Now, as we know that for any atom,
$1mol = {N_A} = 6.02 \times {10^{23}}{\text{ atoms}} = $ molecular mass of atom (that is $14$ for carbon-$14$)
$
14g = 6.02 \times {10^{23}}{\text{ atoms}} \\
{\text{1g}} = \dfrac{{6.02 \times {{10}^{23}}}}{{14}}{\text{ atoms}} \\
$
For $0.2408g = \dfrac{{6.02 \times {{10}^{23}}}}{{14}} \times 0.2408{\text{ atoms}}$
$ = 1.032 \times {10^{22}}{\text{ atoms}}$
Therefore, the number of atoms of carbon$ - 14$ isotopes is $ = 1.032 \times {10^{22}}{\text{ atoms}}$
Hence, option A.) is the correct answer.
Note:
Always remember that if there is a sample given which includes the isotopes of an element then to find average atomic mass we will not just add the molecular mass of the but we will add the product of the molecular mass and abundance for each isotope as the formula is given above.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE