
The $ {K_{sp}} $ of $ Mg{(OH)_2} $ is $ 1 \times {10^{ - 12}} $ . $ 0.01 $ m $ Mg{(OH)_2} $ will precipitate at the limiting $ pH $ equal to:
Answer
530.7k+ views
Hint: $ {K_{sp}} $ is called the solubility product because it is the product of the solubilities of the ions in moles per liter. Here the given compound is $ Mg{(OH)_2} $ which will dissociate into $ 1 $ . Hence, Solubility product expression becomes
$ {K_{sp}} $ = $ [M{g^{2 + }}]{[O{H^ - }]^2} $
The above expression can be simplified to find the $ O{H^ - } $ concentration.
$ [O{H^ - }] $ = $ \sqrt {\dfrac{{{K_{sp}}}}{{[M{g^{2 + }}]}}} $
Complete step by step solution:
$ Mg{(OH)_2} $ will release $ M{g^{2 + }} $ and $ O{H^ - } $ ions according to the reaction,
$ \rightleftharpoons $ $ Mg{(OH)_2} $ $ M{g^{2 + }} $ $ + $ $ 2O{H^ - } $
Thus, the solubility product is
$ {K_{sp}} $ = $ [M{g^{2 + }}]{[O{H^ - }]^2} $
Where $ {K_{sp}} $ = solubility product constant
$ [M{g^{2 + }}] $ =concentration of $ M{g^{2 + }} $ ions
$ [O{H^ - }] $ =concentration of $ O{H^ - } $ ions
In this question we are given the concentration of $ M{g^{2 + }} $ ions ( $ 0.01 $ m) and the value of $ {K_{sp}} $ ( $ 1 \times {10^{ - 12}} $ ).
Using the simplified formula we can find the concentration of $ O{H^ - } $ ions.
$ [O{H^ - }] $ = $ \sqrt {\dfrac{{{K_{sp}}}}{{[M{g^{2 + }}]}}} $
$ \Rightarrow $ $ [O{H^ - }] $ = $ \sqrt {\dfrac{{1 \times {{10}^{ - 12}}}}{{0.01}}} $ m
$ \Rightarrow $ $ [O{H^ - }] $ = $ \sqrt {{{10}^{ - 10}}} $ m
$ \Rightarrow $ $ [O{H^ - }] $ = $ {10^{ - 5}} $ m
Now we got the concentration of $ O{H^ - } $ ions. By using the formula mentioned below, we can find the $ $ $ pOH $ when the concentration of $ O{H^ - } $ ion is known.
$ pOH = - \log [O{H^ - }] $
$ \Rightarrow $ $ pOH = - \log [{10^{ - 5}}] $
$ \Rightarrow pOH = - 1 \times - 5 $
$ \Rightarrow pOH = 5 $
Now the general equation in terms of $ pH $ and $ pOH $ is,
$ pH + pOH = 14 $
$ \Rightarrow pH = 14 - pOH $
As we know $ pOH = 5 $ , thus by substituting the value we get,
$ \Rightarrow pH = 14 - 5 $
$ \Rightarrow pH = 9 $
Therefore, $ 0.01 $ m $ Mg{(OH)_2} $ will precipitate at the limiting $ pH $ of $ 9 $ .
Additional information:
The solubility product is the equilibrium constant for the dissolution of a solid substance into an aqueous solution. It is denoted by the symbol $ {K_{sp}} $ . The value of $ {K_{sp}} $ depends on temperature and is different for every salt. $ {K_{sp}} $ value generally increases with the increase in temperature due to increased solubility. Some of the factors which affect the value of $ {K_{sp}} $ are:
$ \bullet $ Common-ion effect (the presence of a common ion lowers the value of $ {K_{sp}} $ .
$ \bullet $ The diverse ion effect (if the ions of solute are uncommon, the value of $ {K_{sp}} $ will be high).
$ \bullet $ Ion pair presence.
Note:
The idea here is that you need to use magnesium hydroxide’s solubility product constant to determine what concentration of $ O{H^ - } $ ions would cause the solid to precipitate out of solution.
$ {K_{sp}} $ = $ [M{g^{2 + }}]{[O{H^ - }]^2} $
The above expression can be simplified to find the $ O{H^ - } $ concentration.
$ [O{H^ - }] $ = $ \sqrt {\dfrac{{{K_{sp}}}}{{[M{g^{2 + }}]}}} $
Complete step by step solution:
$ Mg{(OH)_2} $ will release $ M{g^{2 + }} $ and $ O{H^ - } $ ions according to the reaction,
$ \rightleftharpoons $ $ Mg{(OH)_2} $ $ M{g^{2 + }} $ $ + $ $ 2O{H^ - } $
Thus, the solubility product is
$ {K_{sp}} $ = $ [M{g^{2 + }}]{[O{H^ - }]^2} $
Where $ {K_{sp}} $ = solubility product constant
$ [M{g^{2 + }}] $ =concentration of $ M{g^{2 + }} $ ions
$ [O{H^ - }] $ =concentration of $ O{H^ - } $ ions
In this question we are given the concentration of $ M{g^{2 + }} $ ions ( $ 0.01 $ m) and the value of $ {K_{sp}} $ ( $ 1 \times {10^{ - 12}} $ ).
Using the simplified formula we can find the concentration of $ O{H^ - } $ ions.
$ [O{H^ - }] $ = $ \sqrt {\dfrac{{{K_{sp}}}}{{[M{g^{2 + }}]}}} $
$ \Rightarrow $ $ [O{H^ - }] $ = $ \sqrt {\dfrac{{1 \times {{10}^{ - 12}}}}{{0.01}}} $ m
$ \Rightarrow $ $ [O{H^ - }] $ = $ \sqrt {{{10}^{ - 10}}} $ m
$ \Rightarrow $ $ [O{H^ - }] $ = $ {10^{ - 5}} $ m
Now we got the concentration of $ O{H^ - } $ ions. By using the formula mentioned below, we can find the $ $ $ pOH $ when the concentration of $ O{H^ - } $ ion is known.
$ pOH = - \log [O{H^ - }] $
$ \Rightarrow $ $ pOH = - \log [{10^{ - 5}}] $
$ \Rightarrow pOH = - 1 \times - 5 $
$ \Rightarrow pOH = 5 $
Now the general equation in terms of $ pH $ and $ pOH $ is,
$ pH + pOH = 14 $
$ \Rightarrow pH = 14 - pOH $
As we know $ pOH = 5 $ , thus by substituting the value we get,
$ \Rightarrow pH = 14 - 5 $
$ \Rightarrow pH = 9 $
Therefore, $ 0.01 $ m $ Mg{(OH)_2} $ will precipitate at the limiting $ pH $ of $ 9 $ .
Additional information:
The solubility product is the equilibrium constant for the dissolution of a solid substance into an aqueous solution. It is denoted by the symbol $ {K_{sp}} $ . The value of $ {K_{sp}} $ depends on temperature and is different for every salt. $ {K_{sp}} $ value generally increases with the increase in temperature due to increased solubility. Some of the factors which affect the value of $ {K_{sp}} $ are:
$ \bullet $ Common-ion effect (the presence of a common ion lowers the value of $ {K_{sp}} $ .
$ \bullet $ The diverse ion effect (if the ions of solute are uncommon, the value of $ {K_{sp}} $ will be high).
$ \bullet $ Ion pair presence.
Note:
The idea here is that you need to use magnesium hydroxide’s solubility product constant to determine what concentration of $ O{H^ - } $ ions would cause the solid to precipitate out of solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

