Answer
Verified
426.9k+ views
Hint:
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE