Answer
Verified
437.4k+ views
Hint:
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE