Answer
Verified
468.3k+ views
- Hint: The time period of a second’s pendulum is $T=$ 2 seconds, the time period $T=2\pi \sqrt{\dfrac{L}{g}}$ where $L$ is length of the simple pendulum and $g$ is gravity. The gravity on the moon is about $\dfrac{1}{6}$ times the gravity of the earth.
Formula used: Time period of a simple pendulum $T=2\pi \sqrt{\dfrac{L}{g}}$
$g_{m}=\dfrac{1}{6}\times g$
Where, $g_{m}$ is the gravity on the moon and $g$ is the gravity on the earth.
Complete step-by-step solution
The time period of a second’s pendulum is $T=$2 seconds, the time period$T=2\pi \sqrt{\dfrac{L}{g}}$,where $L$ is length of the simple pendulum and $g$ is gravity.
$g_{m}=\dfrac{1}{6}\times g$ where,$g_{m}$is the gravity on the moon and $g$ is the gravity on the earth.
We know that the time period of a second’s pendulum is $T=$2 seconds, on both moon and earth.
We can compare the time period of both the systems as:
$2\pi \sqrt{\dfrac{L_{e}}{g_{e}}}=2\pi \sqrt {\dfrac{L_{m}}{g_{m}}}$
$\dfrac{L_{e}}{g_{e}}=\dfrac{L_{m}}{g_{m}}$
We know that $g_{m}=\dfrac{1}{6}\times g_{e}$ and given that $L_{e}=1m$
$\dfrac{1}{g_{e}}=\dfrac{L_{m}}{\dfrac{1}{6}\times g_{e} }$
$L_{m}=\dfrac{1}{6}m$
Hence the length of the seconds’ pendulum on the moon is B. $\dfrac{1}{6}m$
Additional Information:
A simple pendulum is a system which consists of a point-mass bob m hanging from a massless string of length l, from a fixed point. When the bob is displaced or given a small push, the pendulum undergoes an periodic to and fro motion, due to gravity it tries to restore to the a position in equilibrium. After a few oscillations, the energy of the system is lost and it comes to rest.
From Newton’s second law, we can write the equation of motion of the pendulum as $-mg \sin\theta L=mL^{2}\dfrac{d^{2}\theta}{dt^{2}}$.
On simplification we get $\dfrac{d^{2}\theta}{dt^{2}}+\dfrac{g}{L}\theta=0$
On solving the above we get the solutions of the SHM as $\theta(t)=\theta_{o}\cos(\omega t)$, where $\omega = \sqrt {\dfrac{g}{L}} $ is the frequency of the motion.
Then the time period $T$ is given by
$T=\dfrac{2\pi}{\omega}=2\pi \sqrt{\dfrac{L}{g}}$
Note: This might seem like a complex question but it can be solved easily, if the concept of SHM and the formulas are known. This question is asked frequently. Also remember that the time period of a second’s pendulum is $T=$ 2 seconds, and $g_{m}=\dfrac{1}{6}\times g$
Formula used: Time period of a simple pendulum $T=2\pi \sqrt{\dfrac{L}{g}}$
$g_{m}=\dfrac{1}{6}\times g$
Where, $g_{m}$ is the gravity on the moon and $g$ is the gravity on the earth.
Complete step-by-step solution
The time period of a second’s pendulum is $T=$2 seconds, the time period$T=2\pi \sqrt{\dfrac{L}{g}}$,where $L$ is length of the simple pendulum and $g$ is gravity.
$g_{m}=\dfrac{1}{6}\times g$ where,$g_{m}$is the gravity on the moon and $g$ is the gravity on the earth.
We know that the time period of a second’s pendulum is $T=$2 seconds, on both moon and earth.
We can compare the time period of both the systems as:
$2\pi \sqrt{\dfrac{L_{e}}{g_{e}}}=2\pi \sqrt {\dfrac{L_{m}}{g_{m}}}$
$\dfrac{L_{e}}{g_{e}}=\dfrac{L_{m}}{g_{m}}$
We know that $g_{m}=\dfrac{1}{6}\times g_{e}$ and given that $L_{e}=1m$
$\dfrac{1}{g_{e}}=\dfrac{L_{m}}{\dfrac{1}{6}\times g_{e} }$
$L_{m}=\dfrac{1}{6}m$
Hence the length of the seconds’ pendulum on the moon is B. $\dfrac{1}{6}m$
Additional Information:
A simple pendulum is a system which consists of a point-mass bob m hanging from a massless string of length l, from a fixed point. When the bob is displaced or given a small push, the pendulum undergoes an periodic to and fro motion, due to gravity it tries to restore to the a position in equilibrium. After a few oscillations, the energy of the system is lost and it comes to rest.
From Newton’s second law, we can write the equation of motion of the pendulum as $-mg \sin\theta L=mL^{2}\dfrac{d^{2}\theta}{dt^{2}}$.
On simplification we get $\dfrac{d^{2}\theta}{dt^{2}}+\dfrac{g}{L}\theta=0$
On solving the above we get the solutions of the SHM as $\theta(t)=\theta_{o}\cos(\omega t)$, where $\omega = \sqrt {\dfrac{g}{L}} $ is the frequency of the motion.
Then the time period $T$ is given by
$T=\dfrac{2\pi}{\omega}=2\pi \sqrt{\dfrac{L}{g}}$
Note: This might seem like a complex question but it can be solved easily, if the concept of SHM and the formulas are known. This question is asked frequently. Also remember that the time period of a second’s pendulum is $T=$ 2 seconds, and $g_{m}=\dfrac{1}{6}\times g$
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE