The length of carbon-carbon single bond of the compounds
is expected to increase in the order
(A) Ⅲ > Ⅱ > Ⅰ > Ⅳ
(B)Ⅰ > Ⅲ > Ⅱ > Ⅳ
(C) Ⅲ > Ⅳ > Ⅰ > Ⅱ
(D)Ⅱ > Ⅳ > Ⅰ > Ⅲ
Answer
Verified
437.7k+ views
Hint: The length of the carbon-carbon single bond depends upon the hybridization of the carbon atom. The hybridization of the carbon contains S and P characters. More will be the p percentage, more will be the length of the carbon-carbon single bond.
Complete step by step solution:
For comparing the length of the carbon-carbon single bond, we need to check the hybridization of the carbons bonded via single bonds in each option.
In $ sp $ , $ 50\% $ S and $ 50\% $ P character is there.
In $ s{p^2} $ , $ 33.33\% $ S and $ 66.66\% $ P character is there.
In $ s{p^3} $ , $ 25\% $ S and $ 75\% $ P character is there.
Checking each option separately,
(Ⅰ)
$ {C_2} $ and $ {C_3} $ are $ s{p^2} $ and $ sp $ hybridized respectively.
(Ⅱ)
Both $ {C_2} $ and $ {C_3} $ are $ sp $ hybridized respectively.
(Ⅲ)
$ {C_1} $ and $ {C_2} $ are $ s{p^3} $ and $ s{p^2} $ hybridized respectively.
(Ⅳ)
$ \because $
Here, both $ {C_2} $ and $ {C_3} $ are $ s{p^2} $ hybridized respectively.
Now, we know as the p character increases, the bond length of the carbon-carbon single bond increases.
Combining the percentage p character of the carbon-carbon single bond,
For the molecule in option (Ⅰ),
Total p percentage of carbons bonded via single bond = $ 66.66\% + 50\% = 116.66\% $
( $ \because $ $ {C_2} $ and $ {C_3} $ are $ s{p^2} $ and $ sp $ hybridized respectively.)
For the molecule in option (Ⅱ),
Total p percentage of carbons bonded via single bond = $ 50\% + 50\% = 100\% $
( $ \because $ $ {C_2} $ and $ {C_3} $ are $ sp $ hybridized respectively.)
For the molecule in option (Ⅲ),
Total p percentage of carbons bonded via single bond = $ 75\% + 66.66\% = 141.66\% $
( $ \because $ $ {C_1} $ and $ {C_2} $ are $ s{p^3} $ and $ s{p^2} $ hybridized respectively.)
For the molecule present in option (Ⅳ),
Total p percentage of carbons bonded via single bond = $ 66.66\% + 66.66\% = 133.32\% $
( $ \because $ $ {C_2} $ and $ {C_3} $ are $ s{p^2} $ hybridized respectively.)
Now, we can easily compare on the basis of combined percentage p character.
The molecule in option (Ⅲ) will have the longest carbon-carbon single bond length followed by (Ⅳ),
(Ⅰ) and (Ⅱ).
Therefore, the correct order will be Ⅲ > Ⅳ > Ⅰ > Ⅱ
So, the correct option will be option C: Ⅲ > Ⅳ > Ⅰ > Ⅱ.
Additional information:
A carbon-carbon bond is a covalent bond between two carbon atoms. Single bond is the most common form: a bond composed of two electrons, one from each of the two atoms. The carbon-carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms.
Note:
The carbon-carbon single bond length is directly proportional to the combined percentage of p of both the carbon atoms bonded via single bond and inversely proportional to the combined percentage of s of both the carbon atoms bonded via single bond.
As the combined percentage of p increases, bond length of carbon-carbon single bond increases.
Complete step by step solution:
For comparing the length of the carbon-carbon single bond, we need to check the hybridization of the carbons bonded via single bonds in each option.
In $ sp $ , $ 50\% $ S and $ 50\% $ P character is there.
In $ s{p^2} $ , $ 33.33\% $ S and $ 66.66\% $ P character is there.
In $ s{p^3} $ , $ 25\% $ S and $ 75\% $ P character is there.
Checking each option separately,
(Ⅰ)
$ {C_2} $ and $ {C_3} $ are $ s{p^2} $ and $ sp $ hybridized respectively.
(Ⅱ)
Both $ {C_2} $ and $ {C_3} $ are $ sp $ hybridized respectively.
(Ⅲ)
$ {C_1} $ and $ {C_2} $ are $ s{p^3} $ and $ s{p^2} $ hybridized respectively.
(Ⅳ)
Here, both $ {C_2} $ and $ {C_3} $ are $ s{p^2} $ hybridized respectively.
Now, we know as the p character increases, the bond length of the carbon-carbon single bond increases.
Combining the percentage p character of the carbon-carbon single bond,
For the molecule in option (Ⅰ),
Total p percentage of carbons bonded via single bond = $ 66.66\% + 50\% = 116.66\% $
( $ \because $ $ {C_2} $ and $ {C_3} $ are $ s{p^2} $ and $ sp $ hybridized respectively.)
For the molecule in option (Ⅱ),
Total p percentage of carbons bonded via single bond = $ 50\% + 50\% = 100\% $
( $ \because $ $ {C_2} $ and $ {C_3} $ are $ sp $ hybridized respectively.)
For the molecule in option (Ⅲ),
Total p percentage of carbons bonded via single bond = $ 75\% + 66.66\% = 141.66\% $
( $ \because $ $ {C_1} $ and $ {C_2} $ are $ s{p^3} $ and $ s{p^2} $ hybridized respectively.)
For the molecule present in option (Ⅳ),
Total p percentage of carbons bonded via single bond = $ 66.66\% + 66.66\% = 133.32\% $
( $ \because $ $ {C_2} $ and $ {C_3} $ are $ s{p^2} $ hybridized respectively.)
Now, we can easily compare on the basis of combined percentage p character.
The molecule in option (Ⅲ) will have the longest carbon-carbon single bond length followed by (Ⅳ),
(Ⅰ) and (Ⅱ).
Therefore, the correct order will be Ⅲ > Ⅳ > Ⅰ > Ⅱ
So, the correct option will be option C: Ⅲ > Ⅳ > Ⅰ > Ⅱ.
Additional information:
A carbon-carbon bond is a covalent bond between two carbon atoms. Single bond is the most common form: a bond composed of two electrons, one from each of the two atoms. The carbon-carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms.
Note:
The carbon-carbon single bond length is directly proportional to the combined percentage of p of both the carbon atoms bonded via single bond and inversely proportional to the combined percentage of s of both the carbon atoms bonded via single bond.
As the combined percentage of p increases, bond length of carbon-carbon single bond increases.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE