
The length of sonometer wire AB is $100cm$, where should the two bridges be placed from A to divide the wire in 3 segments whose fundamental frequencies are in the ratio of $1:2:6$
A. $30cm,\,90cm$
B. $60cm,\,90cm$
C. $40cm,\,80cm$
D. $20cm,\,30cm$
Answer
418.2k+ views
Hint: Sonometer is basically used to study the relationship between frequency, tension, and linear mass density and length of a stretched string. A Sonometer is a device based on the principle of Resonance. It is used to verify the laws of vibration of stretched string and also to determine the frequency of a tuning fork.
Complete answer:
Given,
The length of sonometer wire, \[AB = 100cm\]
Ratio of segments \[ = 1:2:6\]
Let ${L_1},{L_2}\,and\,{L_3}$be the lengths of three segments.
Then
$ {L_1} + {L_2} + {L_3} = 100$ ……………...(1)
Also the laws of vibrations of stretched strings
\[{f_1}{L_1} = {f_2}{L_2} = {f_3}{L_3}\]
Given
$ \Rightarrow {f_1}:{f_2}:{f_3} = 1:2:6$
Therefore
$ = {L_1}:2{L_2}:6{L_3}$
So
$ {L_2} = \dfrac{{{L_1}}}{2}$
$ {L_3} = \dfrac{{{L_1}}}{6}$
Put the value in equation (1) and we get
$ \Rightarrow {L_1} + \dfrac{{{L_1}}}{2} + \dfrac{{{L_1}}}{6} = 100$
Simplify
$ \Rightarrow \dfrac{{6{L_1} + 3{L_1} + {L_1}}}{6} = 100$
\[ \Rightarrow 10{L_1} = 100 \times 6\]
\[ \Rightarrow {L_1} = \dfrac{{600}}{{10}}\]
\[ \Rightarrow {L_1} = 60cm\]
Now
$ \Rightarrow {L_2} = \dfrac{{{L_1}}}{2}$
$ \Rightarrow {L_2} = \dfrac{{60}}{2}$
$ \Rightarrow {L_2} = 30cm$
Again
\[ \Rightarrow {L_3} = \dfrac{{{L_1}}}{6}\]
\[ \Rightarrow {L_3} = \dfrac{{60}}{6}\]
\[\Rightarrow {L_3} = 10cm\]
Now
The first bridge, \[{L_1} = 60cm\]
The second bridge, \[{L_1} + {L_2}\]
\[ = 60 + 30\]
\[ = 90cm\]
The second bridge is, \[{L_1} + {L_2} = 90cm\]
So the answer is (2) $60cm,\,90cm$.
Additional Information:
The monochord was used as a musical teaching tool in the 11th century by Guido of Arezzo (c. 990-1050), the musician who invented the first useful form of musical notation.
Note: This is known as resonance - when one object vibrating at the same natural frequency of a second object forces that second object into vibrational motion. The word resonance comes from Latin and means to "respond" - to sound out together with a loud sound. Resonance describes the phenomenon of increased amplitude that occurs when the frequency of a periodically applied force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts.
Complete answer:
Given,
The length of sonometer wire, \[AB = 100cm\]
Ratio of segments \[ = 1:2:6\]
Let ${L_1},{L_2}\,and\,{L_3}$be the lengths of three segments.
Then
$ {L_1} + {L_2} + {L_3} = 100$ ……………...(1)
Also the laws of vibrations of stretched strings
\[{f_1}{L_1} = {f_2}{L_2} = {f_3}{L_3}\]
Given
$ \Rightarrow {f_1}:{f_2}:{f_3} = 1:2:6$
Therefore
$ = {L_1}:2{L_2}:6{L_3}$
So
$ {L_2} = \dfrac{{{L_1}}}{2}$
$ {L_3} = \dfrac{{{L_1}}}{6}$
Put the value in equation (1) and we get
$ \Rightarrow {L_1} + \dfrac{{{L_1}}}{2} + \dfrac{{{L_1}}}{6} = 100$
Simplify
$ \Rightarrow \dfrac{{6{L_1} + 3{L_1} + {L_1}}}{6} = 100$
\[ \Rightarrow 10{L_1} = 100 \times 6\]
\[ \Rightarrow {L_1} = \dfrac{{600}}{{10}}\]
\[ \Rightarrow {L_1} = 60cm\]
Now
$ \Rightarrow {L_2} = \dfrac{{{L_1}}}{2}$
$ \Rightarrow {L_2} = \dfrac{{60}}{2}$
$ \Rightarrow {L_2} = 30cm$
Again
\[ \Rightarrow {L_3} = \dfrac{{{L_1}}}{6}\]
\[ \Rightarrow {L_3} = \dfrac{{60}}{6}\]
\[\Rightarrow {L_3} = 10cm\]
Now
The first bridge, \[{L_1} = 60cm\]
The second bridge, \[{L_1} + {L_2}\]
\[ = 60 + 30\]
\[ = 90cm\]
The second bridge is, \[{L_1} + {L_2} = 90cm\]
So the answer is (2) $60cm,\,90cm$.
Additional Information:
The monochord was used as a musical teaching tool in the 11th century by Guido of Arezzo (c. 990-1050), the musician who invented the first useful form of musical notation.
Note: This is known as resonance - when one object vibrating at the same natural frequency of a second object forces that second object into vibrational motion. The word resonance comes from Latin and means to "respond" - to sound out together with a loud sound. Resonance describes the phenomenon of increased amplitude that occurs when the frequency of a periodically applied force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
