Answer
Verified
471.3k+ views
Hint:
In the BCC structure, we have atoms on all vertices as well as one atom is present in the centre of the cube. This means that there are a total of 2 atoms in the entire BCC unit cell.
Formula Used: \[c = \dfrac{{a\sqrt 3 }}{4}\]
Complete step by step answer:
-Let us first understand how we derive the formula for calculating the atomic radius for an atom present in a body-centred cubic metal crystal.
- In a body centred cubic structure, there are atoms present on all 8 vertices of the cube and one atom is present in the centre of the cube. As shown in the figure above, let us consider the length of the side of the cube to be ‘a’ units, the length of the diagonal of the cube to be ‘b’ units and the radius of the atom to be equal to ‘c’ units.
For calculating the value of ‘b’, let us consider the \[\vartriangle EFD\].
In \[\vartriangle EFD\], EF = ED = ‘a’ units and \[\angle FED = 90^\circ \]. Hence \[\vartriangle EFD\]is a right-angled triangle.
Applying Pythagoras theorem, we get,
\[{(EF)^2} + {(ED)^2} = {(FD)^2}\]
\[\therefore {(a)^2} + {(a)^2} = {(b)^2}\]
\[\therefore 2{(a)^2} = {(b)^2}\]
\[\therefore b = a\sqrt 2 \]… (1)
For calculating the value of ‘c’, let us consider the \[\vartriangle AFD\].
In \[\vartriangle AFD\], AD = FD = ‘b’ units and \[\angle FED = 90^\circ \]. Hence \[\vartriangle AFD\]is a right-angled triangle.
Applying Pythagoras theorem, we get,
\[{(AD)^2} + {(FD)^2} = {(FA)^2}\]
\[\therefore {(a)^2} + {(b)^2} = {(FA)^2}\]
\[\therefore {(a)^2} + {(a\sqrt 2 )^2} = {(FA)^2}\]
\[\therefore F{A^2} = {a^2} + 2{a^2}\]
\[\therefore FA = a\sqrt 3 \]… (2)
We can see from the diagram that only a quarter of an atom is inside the cube at the vertices. And, along the diagonal FA, we have 2 quarter atoms and one full atom. This can be represented as:
Hence, there are 4 radii along the diagonal of the cube, i.e. FA = 4c … (3)
From equations (2) and (3) we get,
\[\therefore 4c = a\sqrt 3 \]
\[\therefore c = \dfrac{{a\sqrt 3 }}{4}\]
Now, getting back to question, we can calculate the radius of the atom in the given body-centred cubic metal crystal. Since the edge length is 352 pm,
Hence, radius = c \[ = \dfrac{{352\sqrt 3 }}{4}\]
Hence, radius = c = 152.4 pm
Hence, Option A is the correct option.
Note:
In order to understand the number of neighbours around each particle in a cubic lattice, we must understand a concept known as Coordination number.The coordination number for the various types of cubic arrangements are as follows:
Simple cubic lattice: 6
Body centred cubic lattice: 8
Face centred cubic lattice: 12
In the BCC structure, we have atoms on all vertices as well as one atom is present in the centre of the cube. This means that there are a total of 2 atoms in the entire BCC unit cell.
Formula Used: \[c = \dfrac{{a\sqrt 3 }}{4}\]
Complete step by step answer:
-Let us first understand how we derive the formula for calculating the atomic radius for an atom present in a body-centred cubic metal crystal.
- In a body centred cubic structure, there are atoms present on all 8 vertices of the cube and one atom is present in the centre of the cube. As shown in the figure above, let us consider the length of the side of the cube to be ‘a’ units, the length of the diagonal of the cube to be ‘b’ units and the radius of the atom to be equal to ‘c’ units.
For calculating the value of ‘b’, let us consider the \[\vartriangle EFD\].
In \[\vartriangle EFD\], EF = ED = ‘a’ units and \[\angle FED = 90^\circ \]. Hence \[\vartriangle EFD\]is a right-angled triangle.
Applying Pythagoras theorem, we get,
\[{(EF)^2} + {(ED)^2} = {(FD)^2}\]
\[\therefore {(a)^2} + {(a)^2} = {(b)^2}\]
\[\therefore 2{(a)^2} = {(b)^2}\]
\[\therefore b = a\sqrt 2 \]… (1)
For calculating the value of ‘c’, let us consider the \[\vartriangle AFD\].
In \[\vartriangle AFD\], AD = FD = ‘b’ units and \[\angle FED = 90^\circ \]. Hence \[\vartriangle AFD\]is a right-angled triangle.
Applying Pythagoras theorem, we get,
\[{(AD)^2} + {(FD)^2} = {(FA)^2}\]
\[\therefore {(a)^2} + {(b)^2} = {(FA)^2}\]
\[\therefore {(a)^2} + {(a\sqrt 2 )^2} = {(FA)^2}\]
\[\therefore F{A^2} = {a^2} + 2{a^2}\]
\[\therefore FA = a\sqrt 3 \]… (2)
We can see from the diagram that only a quarter of an atom is inside the cube at the vertices. And, along the diagonal FA, we have 2 quarter atoms and one full atom. This can be represented as:
Hence, there are 4 radii along the diagonal of the cube, i.e. FA = 4c … (3)
From equations (2) and (3) we get,
\[\therefore 4c = a\sqrt 3 \]
\[\therefore c = \dfrac{{a\sqrt 3 }}{4}\]
Now, getting back to question, we can calculate the radius of the atom in the given body-centred cubic metal crystal. Since the edge length is 352 pm,
Hence, radius = c \[ = \dfrac{{352\sqrt 3 }}{4}\]
Hence, radius = c = 152.4 pm
Hence, Option A is the correct option.
Note:
In order to understand the number of neighbours around each particle in a cubic lattice, we must understand a concept known as Coordination number.The coordination number for the various types of cubic arrangements are as follows:
Simple cubic lattice: 6
Body centred cubic lattice: 8
Face centred cubic lattice: 12
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE