
The line segment joining $\left( {2, - 3} \right)$ and $\left( {5,6} \right)$ is divided by $x$ axis in the ratio:
A. 2:1
B. 3:1
C. 1:2
D. 1:3
Answer
583.2k+ views
Hint: Let the coordinates of the point on $x$ axis be $\left( {h,0} \right)$ where the line segment intersects the $x$ axis. Let the required ratio be $1:m$. Then, use the section formula and the given values to determine the value of \[m\] and hence the required ratio.
Complete step-by-step answer:
We are given that the line segment joins $\left( {2, - 3} \right)$ and $\left( {5,6} \right)$ which divides the $x$ axis in certain ratios.
Let the ratio be $1:m$
And the coordinates on the $x$ axis be $\left( {h,0} \right)$
Now, apply the ratio formula on $y$ coordinate of the given line.
If the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are divided by point $\left( {x,y} \right)$ in ratio $p:q$, then the value of the coordinates $\left( {x,y} \right)$ is $\left( {x = \dfrac{{p\left( {{x_2}} \right) + q\left( {{x_1}} \right)}}{{p + q}},y = \dfrac{{p\left( {{y_2}} \right) + q\left( {{y_1}} \right)}}{{p + q}}} \right)$
Then, from the line AB, we have,
$\left( {h = \dfrac{{1\left( 5 \right) + m\left( { 2} \right)}}{{1 + m}},0 = \dfrac{{1\left( 6 \right) + m\left( { - 3} \right)}}{{1 + m}}} \right)$
From the $y$ coordinate we have,
$
\Rightarrow 0 = \dfrac{{6 - 3m}}{{1 + m}} \\
\Rightarrow 6 - 3m = 0 \\
\Rightarrow 3m = 6 \\
$
Divide both equations by 3
$\Rightarrow$ $m = 2$
Hence, the ratio is 1:2
Thus, option C is correct.
Note: The coordinates on the $x$ axis is of the form $\left( {h,0} \right)$ whereas the coordinates on the $y$ axis is of the form $\left( {0,k} \right)$. Here, we have used the section formula, if the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are divided by point $\left( {x,y} \right)$ in ratio $p:q$, then the value of the coordinates $\left( {x,y} \right)$ is $\left( {x = \dfrac{{p\left( {{x_2}} \right) + q\left( {{x_1}} \right)}}{{p + q}},y = \dfrac{{p\left( {{y_2}} \right) + q\left( {{y_1}} \right)}}{{p + q}}} \right)$.
Complete step-by-step answer:
We are given that the line segment joins $\left( {2, - 3} \right)$ and $\left( {5,6} \right)$ which divides the $x$ axis in certain ratios.
Let the ratio be $1:m$
And the coordinates on the $x$ axis be $\left( {h,0} \right)$
Now, apply the ratio formula on $y$ coordinate of the given line.
If the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are divided by point $\left( {x,y} \right)$ in ratio $p:q$, then the value of the coordinates $\left( {x,y} \right)$ is $\left( {x = \dfrac{{p\left( {{x_2}} \right) + q\left( {{x_1}} \right)}}{{p + q}},y = \dfrac{{p\left( {{y_2}} \right) + q\left( {{y_1}} \right)}}{{p + q}}} \right)$
Then, from the line AB, we have,
$\left( {h = \dfrac{{1\left( 5 \right) + m\left( { 2} \right)}}{{1 + m}},0 = \dfrac{{1\left( 6 \right) + m\left( { - 3} \right)}}{{1 + m}}} \right)$
From the $y$ coordinate we have,
$
\Rightarrow 0 = \dfrac{{6 - 3m}}{{1 + m}} \\
\Rightarrow 6 - 3m = 0 \\
\Rightarrow 3m = 6 \\
$
Divide both equations by 3
$\Rightarrow$ $m = 2$
Hence, the ratio is 1:2
Thus, option C is correct.
Note: The coordinates on the $x$ axis is of the form $\left( {h,0} \right)$ whereas the coordinates on the $y$ axis is of the form $\left( {0,k} \right)$. Here, we have used the section formula, if the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are divided by point $\left( {x,y} \right)$ in ratio $p:q$, then the value of the coordinates $\left( {x,y} \right)$ is $\left( {x = \dfrac{{p\left( {{x_2}} \right) + q\left( {{x_1}} \right)}}{{p + q}},y = \dfrac{{p\left( {{y_2}} \right) + q\left( {{y_1}} \right)}}{{p + q}}} \right)$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

