Answer
Verified
460.2k+ views
Hint: In the question, the linear density of the rod is given to us. The linear density of the rod, otherwise known as the mass density of the rod is the mass per unit area of the rod. In this question the linear density of the rod is a variable function, so we will have to integrate the function by taking a small element in order to get the total mass of the rod.
Complete step-by-step solution
Before we start solving the question that is given to us, let us take a look at all the parameters that are given to us in the above question
Length of the rod = l = 1.0 m
Linear Density = $\lambda =2kg/m+(\dfrac{2kg}{{{m}^{2}}})x$
Where x is the distance from one of its end
Now,
Let us consider a very small element of the rod of length dx at a distance x from one of the ends.
So,
The mass of the element dx will be,
$\Rightarrow dm=\lambda dx$
$\Rightarrow dm=(2+2x)dx$
Now,
Integrating on the both side
$\Rightarrow M=\int\limits_{0}^{1}{dm}=\int\limits_{0}^{1}{(2+2x)dx}$
Where, M is the weight of the whole rod
\[\Rightarrow M=[(2x+\dfrac{2{{x}^{2}}}{2})]_{0}^{1}\]
\[\Rightarrow M=3kg\]
Now, for the centre of mass
$\Rightarrow {{x}_{cm}}=\dfrac{\int{xdm}}{\int{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{xdm}}{\int\limits_{o}^{q}{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{x(2+2x)dx}}{\int\limits_{o}^{q}{(2+2x)dx}}$
\[\Rightarrow {{x}_{cm}}=[\dfrac{(\dfrac{2{{x}^{2}}}{2}+\dfrac{2{{x}^{3}}}{3})}{2x+\dfrac{2{{x}^{2}}}{2}}]_{0}^{1}\]
$\Rightarrow {{x}_{cm}}=\dfrac{1+\dfrac{2}{3}}{3}$
$\Rightarrow {{x}_{cm}}=\dfrac{5}{9}m$
So, the centre of mass of the rod will be at $\dfrac{5}{9}m$ from one of its end
So, the correct answer to this question will be Option – C, i.e., $\dfrac{5}{9}m$
Note: Keep in mind that there could be two answers to this question, depending on which end we are taking. The two answers will be $\dfrac{5}{9}m$ or $\dfrac{4}{9}m$. In this question, the center of mass is $\dfrac{5}{9}m$ away from the end with the smaller mass density.
Complete step-by-step solution
Before we start solving the question that is given to us, let us take a look at all the parameters that are given to us in the above question
Length of the rod = l = 1.0 m
Linear Density = $\lambda =2kg/m+(\dfrac{2kg}{{{m}^{2}}})x$
Where x is the distance from one of its end
Now,
Let us consider a very small element of the rod of length dx at a distance x from one of the ends.
So,
The mass of the element dx will be,
$\Rightarrow dm=\lambda dx$
$\Rightarrow dm=(2+2x)dx$
Now,
Integrating on the both side
$\Rightarrow M=\int\limits_{0}^{1}{dm}=\int\limits_{0}^{1}{(2+2x)dx}$
Where, M is the weight of the whole rod
\[\Rightarrow M=[(2x+\dfrac{2{{x}^{2}}}{2})]_{0}^{1}\]
\[\Rightarrow M=3kg\]
Now, for the centre of mass
$\Rightarrow {{x}_{cm}}=\dfrac{\int{xdm}}{\int{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{xdm}}{\int\limits_{o}^{q}{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{x(2+2x)dx}}{\int\limits_{o}^{q}{(2+2x)dx}}$
\[\Rightarrow {{x}_{cm}}=[\dfrac{(\dfrac{2{{x}^{2}}}{2}+\dfrac{2{{x}^{3}}}{3})}{2x+\dfrac{2{{x}^{2}}}{2}}]_{0}^{1}\]
$\Rightarrow {{x}_{cm}}=\dfrac{1+\dfrac{2}{3}}{3}$
$\Rightarrow {{x}_{cm}}=\dfrac{5}{9}m$
So, the centre of mass of the rod will be at $\dfrac{5}{9}m$ from one of its end
So, the correct answer to this question will be Option – C, i.e., $\dfrac{5}{9}m$
Note: Keep in mind that there could be two answers to this question, depending on which end we are taking. The two answers will be $\dfrac{5}{9}m$ or $\dfrac{4}{9}m$. In this question, the center of mass is $\dfrac{5}{9}m$ away from the end with the smaller mass density.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE