Answer
Verified
432.6k+ views
Hint: Here we will first draw the diagram of the circles which touch the other two circles externally. Then we will see the distance between their centers and from those equations we will find the other equation. Then we will see or check whether the final equation satisfies any of the curve property.
Complete Complete Step by Step Solution:
It is given that the circle touches the other two circle i.e. \[\left| {z - {z_1}} \right| = a\] and \[\left| {z - {z_2}} \right| = b\] externally.
So, the center of the circle one is \[{z_1}\] with radius \[a\] and the center of the other circle is \[{z_2}\] with radius \[b\].
Now we will draw these two circles with the third circles which touch them externally. So, we get
Now we know that the distance between the centers of the circle is equal to the sum of their radius. Therefore, we can write it as
\[ \Rightarrow \left| {z - {z_1}} \right| = a + r\]……………. \[\left( 1 \right)\]
Similarly writing the distance equation for other circle, we get
\[ \Rightarrow \left| {z - {z_2}} \right| = b + r\]……………. \[\left( 2 \right)\]
Now from the equation \[\left( 1 \right)\] we will find the value of \[r\] . So, we get
\[r = \left| {z - {z_1}} \right| - a\]
Substituting the value of \[r\] in the equation \[\left( 2 \right)\], we get
\[\left| {z - {z_2}} \right| = b + r = b + \left| {z - {z_1}} \right| - a\]
Now subtracting \[\left| {z - {z_1}} \right|\] from both the sides, we get
\[ \Rightarrow \left| {z - {z_2}} \right| - \left| {z - {z_1}} \right| = b - a\]
Now, from equation \[\left( 2 \right)\], we get
\[r = \left| {z - {z_2}} \right| - b\]
Substituting this value in equation \[\left( 1 \right)\], we get
\[\left| {z - {z_1}} \right| = a + \left| {z - {z_2}} \right| - b\]
Now subtracting \[\left| {z - {z_1}} \right|\] from both the sides, we get
\[ \Rightarrow \left| {z - {z_2}} \right| - \left| {z - {z_1}} \right| = b - a\]
Now from both the equations, we got the same result.
This means that the difference between the distances of the center of the circles is constant.
As we know that the distance between the foci of the hyperbola remains constant i.e. \[\left| {PS - PS'} \right| = 2a\].
Then by comparing this with the obtained equation, we can say that the locus of the center of a circle which touches the circles\[\left| {z - {z_1}} \right| = a\] and \[\left| {z - {z_2}} \right| = b\] externally will be a Hyperbola.
Hence, the locus of the center of a circle which touches the circles externally will be a Hyperbola.
Note:
1) Here we should know that the distance between the foci of the hyperbola always remains constant i.e. \[\left| {PS - PS'} \right| = 2a\] also the distance between the centers of the two external touching circles is equal to the sum of their radius.
2) While solving this question we have to make an equation that satisfies the property of the curve then we can say that the locus of the center of a circle is of that type of curve.
Complete Complete Step by Step Solution:
It is given that the circle touches the other two circle i.e. \[\left| {z - {z_1}} \right| = a\] and \[\left| {z - {z_2}} \right| = b\] externally.
So, the center of the circle one is \[{z_1}\] with radius \[a\] and the center of the other circle is \[{z_2}\] with radius \[b\].
Now we will draw these two circles with the third circles which touch them externally. So, we get
Now we know that the distance between the centers of the circle is equal to the sum of their radius. Therefore, we can write it as
\[ \Rightarrow \left| {z - {z_1}} \right| = a + r\]……………. \[\left( 1 \right)\]
Similarly writing the distance equation for other circle, we get
\[ \Rightarrow \left| {z - {z_2}} \right| = b + r\]……………. \[\left( 2 \right)\]
Now from the equation \[\left( 1 \right)\] we will find the value of \[r\] . So, we get
\[r = \left| {z - {z_1}} \right| - a\]
Substituting the value of \[r\] in the equation \[\left( 2 \right)\], we get
\[\left| {z - {z_2}} \right| = b + r = b + \left| {z - {z_1}} \right| - a\]
Now subtracting \[\left| {z - {z_1}} \right|\] from both the sides, we get
\[ \Rightarrow \left| {z - {z_2}} \right| - \left| {z - {z_1}} \right| = b - a\]
Now, from equation \[\left( 2 \right)\], we get
\[r = \left| {z - {z_2}} \right| - b\]
Substituting this value in equation \[\left( 1 \right)\], we get
\[\left| {z - {z_1}} \right| = a + \left| {z - {z_2}} \right| - b\]
Now subtracting \[\left| {z - {z_1}} \right|\] from both the sides, we get
\[ \Rightarrow \left| {z - {z_2}} \right| - \left| {z - {z_1}} \right| = b - a\]
Now from both the equations, we got the same result.
This means that the difference between the distances of the center of the circles is constant.
As we know that the distance between the foci of the hyperbola remains constant i.e. \[\left| {PS - PS'} \right| = 2a\].
Then by comparing this with the obtained equation, we can say that the locus of the center of a circle which touches the circles\[\left| {z - {z_1}} \right| = a\] and \[\left| {z - {z_2}} \right| = b\] externally will be a Hyperbola.
Hence, the locus of the center of a circle which touches the circles externally will be a Hyperbola.
Note:
1) Here we should know that the distance between the foci of the hyperbola always remains constant i.e. \[\left| {PS - PS'} \right| = 2a\] also the distance between the centers of the two external touching circles is equal to the sum of their radius.
2) While solving this question we have to make an equation that satisfies the property of the curve then we can say that the locus of the center of a circle is of that type of curve.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE