The locus of the mid-point of those chord of the circle ${{x}^{2}}+{{y}^{2}}=4$ which subtend a right angle at the origin is –
(a) ${{x}^{2}}+{{y}^{2}}-2x-2y=0$
(b) ${{x}^{2}}+{{y}^{2}}=4$
(c) ${{x}^{2}}+{{y}^{2}}=2$
(d) \[{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=5\]
Answer
Verified
468.6k+ views
Hint: This question is based on concept of locus and property of chord of circle. First of all, we assume the coordinate of the midpoint of the chord is$\left( h,k \right)$. Let the chord is $AB$ and the parametric points $A$ and $B$ are $\left( 2\cos \theta ,2\sin \theta \right)$ and $\left( 2\sin \varphi ,2\cos \varphi \right)$ respectively. Now using mid-point theorem and perpendicular formula, we solve for locus of$\left( h,k \right)$. By solving equation, we eliminate parametric variables and at last replace $h$ with $x$ and $k$ with$y$.
(i) Mid-point Theorem: If $M$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is $\left( {{x}_{2}},{{y}_{2}} \right)$, and let $M$ be $\left( x,y \right)$. Then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
(ii) Perpendicular formula: If two lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ are perpendicular to each other, then
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step-by-step answer:
Now, getting started with the solution, let’s write the given data.
Given equation of circle is ${{x}^{2}}+{{y}^{2}}=4$ … (i)
Centre is $\left( 0,0 \right)$ and radius $=2$
So, the circle can be represented as –
Let $AB$ is the chord of a circle joining parametric points $A\left( \theta \right)$ and$B\left( \varphi \right)$. So, $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is$\left( 2\cos \varphi ,2\sin \varphi \right)$.
As we know that, slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ $=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$.
So, slope of line $OA$ joining points $O\left( 0,0 \right)$ and $A\left( 2\cos \theta ,2\sin \theta \right)$ \[=\dfrac{\left( 2\sin \theta -0 \right)}{\left( 2\cos \theta -0 \right)}\]
$\Rightarrow {{m}_{OA}}=\tan \theta $
And, slope of line $OB$ joining $O\left( 0,0 \right)$ and $B\left( 2\cos \varphi ,2\sin \varphi \right)$ $==\dfrac{\left( 2\sin \varphi -0 \right)}{\left( 2\cos \varphi -0 \right)}$
$\Rightarrow {{m}_{OB}}=\tan \varphi $
Now, as we know that multiplication of two perpendicular lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ is $\left( -1 \right)$.
${{m}_{1}}\times {{m}_{2}}=-1$
According to the question, $OA$ and $OB$ are perpendicular.
${{m}_{OA}}\times {{m}_{OB}}=-1$
$\Rightarrow \tan \theta \times \tan \varphi =-1$
\[\Rightarrow \dfrac{\sin \theta \times \sin \varphi }{\cos \theta \times \cos \varphi }=-1\]
\[\Rightarrow \cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\] … (ii)
Now as we know that midpoint $M\left( x,y \right)$ of line segment$AB$, where $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is –
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Now let us assume midpoint of chord$AB$, where $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is $\left( 2\cos \varphi ,2\sin \varphi \right)$ is $P\left( h,k \right)$.
Then,
$h=\dfrac{2\cos \theta +2\cos \varphi }{2}$
$\Rightarrow h=\cos \theta +\cos \varphi $ … (iii)
$k=\dfrac{2\sin \theta +2\sin \varphi }{2}$
$\Rightarrow k=\sin \theta +\sin \varphi $ … (iv)
Now by adding squares of equation (iii) and (iv), we get
${{h}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}}$ and ${{k}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}$
\[\Rightarrow {{h}^{2}}+{{k}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi \]
\[\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=1+1+2\left( \cos \theta \cos \varphi +\sin \theta \sin \varphi \right)\]
Now by equation (ii), \[\cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2+0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2\]
Now by replacing $h\to x$ and$k\to y$, we have
\[\Rightarrow {{x}^{2}}+{{y}^{2}}=2\]
So, the locus of the midpoint of chord is a circle, \[{{x}^{2}}+{{y}^{2}}=2\].
So, the correct answer is “Option A”.
Note: (i) In this type of question while solving equations, we should try to eliminate all other variables except $h$ and$k$, and get equations in $h$ and $k$.
(ii) In this question, we get an equation$\tan \theta \times \tan \varphi =-1$.
If we consider formula:
$\tan \left( \theta -\varphi \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }$
$\because \tan \left( \theta -\varphi \right)\to \infty $
$\Rightarrow \left( \theta -\varphi \right)=90{}^\circ $
$\Rightarrow \theta =90{}^\circ +\varphi $
We can use this relation also to solve the equation at last.
(iii) Here, students should take care while squaring and adding the two equations that there should not be any calculation mistakes, otherwise the whole question will be wrong.
(i) Mid-point Theorem: If $M$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is $\left( {{x}_{2}},{{y}_{2}} \right)$, and let $M$ be $\left( x,y \right)$. Then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
(ii) Perpendicular formula: If two lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ are perpendicular to each other, then
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step-by-step answer:
Now, getting started with the solution, let’s write the given data.
Given equation of circle is ${{x}^{2}}+{{y}^{2}}=4$ … (i)
Centre is $\left( 0,0 \right)$ and radius $=2$
So, the circle can be represented as –
Let $AB$ is the chord of a circle joining parametric points $A\left( \theta \right)$ and$B\left( \varphi \right)$. So, $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is$\left( 2\cos \varphi ,2\sin \varphi \right)$.
As we know that, slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ $=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$.
So, slope of line $OA$ joining points $O\left( 0,0 \right)$ and $A\left( 2\cos \theta ,2\sin \theta \right)$ \[=\dfrac{\left( 2\sin \theta -0 \right)}{\left( 2\cos \theta -0 \right)}\]
$\Rightarrow {{m}_{OA}}=\tan \theta $
And, slope of line $OB$ joining $O\left( 0,0 \right)$ and $B\left( 2\cos \varphi ,2\sin \varphi \right)$ $==\dfrac{\left( 2\sin \varphi -0 \right)}{\left( 2\cos \varphi -0 \right)}$
$\Rightarrow {{m}_{OB}}=\tan \varphi $
Now, as we know that multiplication of two perpendicular lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ is $\left( -1 \right)$.
${{m}_{1}}\times {{m}_{2}}=-1$
According to the question, $OA$ and $OB$ are perpendicular.
${{m}_{OA}}\times {{m}_{OB}}=-1$
$\Rightarrow \tan \theta \times \tan \varphi =-1$
\[\Rightarrow \dfrac{\sin \theta \times \sin \varphi }{\cos \theta \times \cos \varphi }=-1\]
\[\Rightarrow \cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\] … (ii)
Now as we know that midpoint $M\left( x,y \right)$ of line segment$AB$, where $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is –
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Now let us assume midpoint of chord$AB$, where $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is $\left( 2\cos \varphi ,2\sin \varphi \right)$ is $P\left( h,k \right)$.
Then,
$h=\dfrac{2\cos \theta +2\cos \varphi }{2}$
$\Rightarrow h=\cos \theta +\cos \varphi $ … (iii)
$k=\dfrac{2\sin \theta +2\sin \varphi }{2}$
$\Rightarrow k=\sin \theta +\sin \varphi $ … (iv)
Now by adding squares of equation (iii) and (iv), we get
${{h}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}}$ and ${{k}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}$
\[\Rightarrow {{h}^{2}}+{{k}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi \]
\[\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=1+1+2\left( \cos \theta \cos \varphi +\sin \theta \sin \varphi \right)\]
Now by equation (ii), \[\cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2+0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2\]
Now by replacing $h\to x$ and$k\to y$, we have
\[\Rightarrow {{x}^{2}}+{{y}^{2}}=2\]
So, the locus of the midpoint of chord is a circle, \[{{x}^{2}}+{{y}^{2}}=2\].
So, the correct answer is “Option A”.
Note: (i) In this type of question while solving equations, we should try to eliminate all other variables except $h$ and$k$, and get equations in $h$ and $k$.
(ii) In this question, we get an equation$\tan \theta \times \tan \varphi =-1$.
If we consider formula:
$\tan \left( \theta -\varphi \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }$
$\because \tan \left( \theta -\varphi \right)\to \infty $
$\Rightarrow \left( \theta -\varphi \right)=90{}^\circ $
$\Rightarrow \theta =90{}^\circ +\varphi $
We can use this relation also to solve the equation at last.
(iii) Here, students should take care while squaring and adding the two equations that there should not be any calculation mistakes, otherwise the whole question will be wrong.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE