
The locus of the poles of normal chords of the ellipse $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ is
a) $ \dfrac{{{x^2}}}{{{a^4}}} + \dfrac{{{y^2}}}{{{b^4}}} = {a^2} + {b^2} $
b) $ \dfrac{{{x^2}}}{{{a^4}}} + \dfrac{{{y^2}}}{{{b^4}}} = {a^2} - {b^2} $
c) $ \dfrac{{{a^6}}}{{{x^2}}} + \dfrac{{{b^6}}}{{{y^2}}} = {({a^2} - {b^2})^2} $
d) $ \dfrac{{{a^4}}}{{{x^2}}} + \dfrac{{{b^4}}}{{{y^2}}} = {({a^2} - {b^2})^2} $
Answer
474k+ views
Hint: The given equation is the equation of an ellipse. We will take a polar coordinate, and put it in the given equation by substituting only one $ x $ and $ y $ by the taken polar coordinate. Then we will find out the normal to the ellipse and compare the generated equation with the standard form of the normal of an ellipse, by certain algebraic manipulations we will get the equation for locus of the poles of normal chords of the ellipse $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Formula used:
1) $ \csc \theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }} $
2) $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
Complete step-by-step answer:
We are given in the question that the equation of the ellipse is
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
So the given equation is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ --------(i)
Now we will try to take a polar coordinate to substitute in one $ x $ and $ y $ in the above equation (i)
Let \[\left( {h,k} \right)\] be the polar coordinate.
Now polar equation of \[\left( {h,k} \right)\] with respect to the ellipse is given by
$ \dfrac{{xh}}{{{a^2}}} + \dfrac{{yk}}{{{b^2}}} = 1 $ --------(ii)
If the above equation represents normal to the ellipse then it must be identical to the general form of the equation of normal of an ellipse.
$ ax\sec \theta - by\csc \theta = {a^2} - {b^2} $
Comparing this with (ii) we get:
$ \dfrac{{\left( {\dfrac{h}{{{a^2}}}} \right)}}{{a\sec \theta }} = \dfrac{{\left( {\dfrac{k}{{{b^2}}}} \right)}}{{ - b\csc \theta }} = \dfrac{1}{{{a^2} - {b^2}}} $
$ \dfrac{{{a^2} - {b^2}}}{a}\left( {\dfrac{h}{{{a^2}}}} \right) = \sec \theta $ and $ \dfrac{{{a^2} - {b^2}}}{{ - b}}\left( {\dfrac{k}{{{b^2}}}} \right) = \csc \theta $
$ \Rightarrow \cos \theta = \dfrac{a}{{{a^2} - {b^2}}}\left( {\dfrac{{{a^2}}}{h}} \right) $ and $ \sin \theta = \dfrac{{ - b}}{{{a^2} - {b^2}}}\left( {\dfrac{{{b^2}}}{k}} \right) $
$ \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{{{a^3}}}{h}} \right)}}{{{a^2} - {b^2}}} $ and $ \sin \theta = \dfrac{{ - \left( {\dfrac{{{b^3}}}{k}} \right)}}{{{a^2} - {b^2}}} $
Now, squaring both terms and adding them we get:
$ {\cos ^2}\theta + {\sin ^2}\theta = {\left[ {\dfrac{{\left( {\dfrac{{{a^3}}}{h}} \right)}}{{{a^2} - {b^2}}}} \right]^2} + {\left[ {\dfrac{{ - \left( {\dfrac{{{b^3}}}{k}} \right)}}{{{a^2} - {b^2}}}} \right]^2} $
\[ \Rightarrow 1 = \dfrac{1}{{{{({a^2} - {b^2})}^2}}}\left[ {\left( {\dfrac{{{a^6}}}{{{h^2}}}} \right) + \left( {\dfrac{{{b^6}}}{{{k^2}}}} \right)} \right]\]
On cross multiplication we get:
\[\left( {\dfrac{{{a^6}}}{{{h^2}}}} \right) + \left( {\dfrac{{{b^6}}}{{{k^2}}}} \right) = {({a^2} - {b^2})^2}\] Which is the required locus for \[\left( {h,k} \right)\]
Replacing \[\left( {h,k} \right)\] with \[\left( {x,y} \right)\] we get: \[\left( {\dfrac{{{a^6}}}{{{x^2}}}} \right) + \left( {\dfrac{{{b^6}}}{{{y^2}}}} \right) = {({a^2} - {b^2})^2}\]
So, the correct answer is “Option C”.
Note: The algebraic substitutions and calculation involves so many complicated terms, use only one operation at a time. Applying operations repeatedly in the same process may result in errors in your solution.
Formula used:
1) $ \csc \theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }} $
2) $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
Complete step-by-step answer:
We are given in the question that the equation of the ellipse is
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
So the given equation is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ --------(i)
Now we will try to take a polar coordinate to substitute in one $ x $ and $ y $ in the above equation (i)
Let \[\left( {h,k} \right)\] be the polar coordinate.
Now polar equation of \[\left( {h,k} \right)\] with respect to the ellipse is given by
$ \dfrac{{xh}}{{{a^2}}} + \dfrac{{yk}}{{{b^2}}} = 1 $ --------(ii)
If the above equation represents normal to the ellipse then it must be identical to the general form of the equation of normal of an ellipse.
$ ax\sec \theta - by\csc \theta = {a^2} - {b^2} $
Comparing this with (ii) we get:
$ \dfrac{{\left( {\dfrac{h}{{{a^2}}}} \right)}}{{a\sec \theta }} = \dfrac{{\left( {\dfrac{k}{{{b^2}}}} \right)}}{{ - b\csc \theta }} = \dfrac{1}{{{a^2} - {b^2}}} $
$ \dfrac{{{a^2} - {b^2}}}{a}\left( {\dfrac{h}{{{a^2}}}} \right) = \sec \theta $ and $ \dfrac{{{a^2} - {b^2}}}{{ - b}}\left( {\dfrac{k}{{{b^2}}}} \right) = \csc \theta $
$ \Rightarrow \cos \theta = \dfrac{a}{{{a^2} - {b^2}}}\left( {\dfrac{{{a^2}}}{h}} \right) $ and $ \sin \theta = \dfrac{{ - b}}{{{a^2} - {b^2}}}\left( {\dfrac{{{b^2}}}{k}} \right) $
$ \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{{{a^3}}}{h}} \right)}}{{{a^2} - {b^2}}} $ and $ \sin \theta = \dfrac{{ - \left( {\dfrac{{{b^3}}}{k}} \right)}}{{{a^2} - {b^2}}} $
Now, squaring both terms and adding them we get:
$ {\cos ^2}\theta + {\sin ^2}\theta = {\left[ {\dfrac{{\left( {\dfrac{{{a^3}}}{h}} \right)}}{{{a^2} - {b^2}}}} \right]^2} + {\left[ {\dfrac{{ - \left( {\dfrac{{{b^3}}}{k}} \right)}}{{{a^2} - {b^2}}}} \right]^2} $
\[ \Rightarrow 1 = \dfrac{1}{{{{({a^2} - {b^2})}^2}}}\left[ {\left( {\dfrac{{{a^6}}}{{{h^2}}}} \right) + \left( {\dfrac{{{b^6}}}{{{k^2}}}} \right)} \right]\]
On cross multiplication we get:
\[\left( {\dfrac{{{a^6}}}{{{h^2}}}} \right) + \left( {\dfrac{{{b^6}}}{{{k^2}}}} \right) = {({a^2} - {b^2})^2}\] Which is the required locus for \[\left( {h,k} \right)\]
Replacing \[\left( {h,k} \right)\] with \[\left( {x,y} \right)\] we get: \[\left( {\dfrac{{{a^6}}}{{{x^2}}}} \right) + \left( {\dfrac{{{b^6}}}{{{y^2}}}} \right) = {({a^2} - {b^2})^2}\]
So, the correct answer is “Option C”.
Note: The algebraic substitutions and calculation involves so many complicated terms, use only one operation at a time. Applying operations repeatedly in the same process may result in errors in your solution.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
