Answer
Verified
431.7k+ views
Hint: Use the expression for the absolute permeability of a material. This formula gives the relation between permeability of the free space and magnetic susceptibility of the material. Substitute all the given values in this equation and determine the absolute permeability of the material of the rod.
Formula used:
The absolute permeability \[\mu \] of the material is given by
\[\mu = {\mu _0}\left( {1 + {\chi _m}} \right)\] …… (1)
Here, \[{\mu _0}\] is the permeability of the free space and \[{\chi _m}\] is the magnetic susceptibility of the material.
Complete step by step answer:
We have given that the magnetic susceptibility of a material of rod is 299.
\[{\chi _m} = 299\]
The permeability of the free space is \[4\pi \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\].
\[{\mu _0} = 4\pi \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\]
We can determine the absolute permeability of the material of the rod using equation (1).
Substitute \[4\pi \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\] for \[{\mu _0}\] and \[299\] for \[{\chi _m}\] in equation (1).
\[\mu = \left( {4\pi \times {{10}^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}} \right)\left( {1 + 299} \right)\]
\[ \Rightarrow \mu = \left( {4\pi \times {{10}^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}} \right)\left( {300} \right)\]
Substitute \[\dfrac{{22}}{7}\] for \[\pi \] in the above equation.
\[ \Rightarrow \mu = \left( {4 \times \dfrac{{22}}{7} \times {{10}^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}} \right)\left( {300} \right)\]
\[ \Rightarrow \mu = \dfrac{{26400}}{7} \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\]
\[ \therefore \mu = 3771 \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\]
Therefore, the absolute permeability of the material of the rod is \[3771 \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\].
Hence, the correct option is A.
Additional information:
The permeability of a material is the resistance offered by the material to the external magnetic field.The magnetic susceptibility of a material is the ability of the material to get magnetized when it is exposed to an external magnetic field.The ratio of the magnetic moment per unit volume to the magnetizing field intensity is known as magnetic susceptibility of the material.
Note:The students may get confused that why the value of \[\pi \] is substituted as \[\dfrac{{22}}{7}\] in the formula for absolute permeability of the material of the rod. There are two values of \[\pi \] which are 3.14 as well as \[\dfrac{{22}}{7}\]. Here, the value \[\dfrac{{22}}{7}\] of \[\pi \] is substituted to make the calculations simple.
Formula used:
The absolute permeability \[\mu \] of the material is given by
\[\mu = {\mu _0}\left( {1 + {\chi _m}} \right)\] …… (1)
Here, \[{\mu _0}\] is the permeability of the free space and \[{\chi _m}\] is the magnetic susceptibility of the material.
Complete step by step answer:
We have given that the magnetic susceptibility of a material of rod is 299.
\[{\chi _m} = 299\]
The permeability of the free space is \[4\pi \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\].
\[{\mu _0} = 4\pi \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\]
We can determine the absolute permeability of the material of the rod using equation (1).
Substitute \[4\pi \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\] for \[{\mu _0}\] and \[299\] for \[{\chi _m}\] in equation (1).
\[\mu = \left( {4\pi \times {{10}^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}} \right)\left( {1 + 299} \right)\]
\[ \Rightarrow \mu = \left( {4\pi \times {{10}^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}} \right)\left( {300} \right)\]
Substitute \[\dfrac{{22}}{7}\] for \[\pi \] in the above equation.
\[ \Rightarrow \mu = \left( {4 \times \dfrac{{22}}{7} \times {{10}^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}} \right)\left( {300} \right)\]
\[ \Rightarrow \mu = \dfrac{{26400}}{7} \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\]
\[ \therefore \mu = 3771 \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\]
Therefore, the absolute permeability of the material of the rod is \[3771 \times {10^{ - 7}}\,{\text{H}} \cdot {{\text{m}}^{ - 1}}\].
Hence, the correct option is A.
Additional information:
The permeability of a material is the resistance offered by the material to the external magnetic field.The magnetic susceptibility of a material is the ability of the material to get magnetized when it is exposed to an external magnetic field.The ratio of the magnetic moment per unit volume to the magnetizing field intensity is known as magnetic susceptibility of the material.
Note:The students may get confused that why the value of \[\pi \] is substituted as \[\dfrac{{22}}{7}\] in the formula for absolute permeability of the material of the rod. There are two values of \[\pi \] which are 3.14 as well as \[\dfrac{{22}}{7}\]. Here, the value \[\dfrac{{22}}{7}\] of \[\pi \] is substituted to make the calculations simple.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE