The magnitude of two vectors P and Q differ by 1. The magnitude of their resultant makes an angle of \[{{\tan }^{-1}}\left(\dfrac{3}{4} \right)\] with P. The angle between P and Q is:
A. \[45{}^\circ \]
B. \[0{}^\circ \]
C. \[180{}^\circ \]
D. \[90{}^\circ \]
Answer
Verified
448.8k+ views
Hint: In this question we have been asked to calculate the angle between vector P and vector Q. it is given that the magnitude of resultant vector makes an angle of \[{{\tan }^{-1}}\left( \dfrac{3}{4}\right)\] with vector P. Therefore, to solve this question, we shall use the triangle rule for vector to calculate the angle between vectors P and Q.
Formula used: -\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\]
Where,
C is the hypotenuse
A and B are opposite and adjacent sides.
Complete step-by-step solution:
It is given that the magnitude of resultant vector P makes an angle of \[{{\tan }^{-1}}\left(\dfrac{3}{4} \right)\].
This means that the ratio of the two given vectors is \[\dfrac{3}{4}\]
Therefore,
We know that,
\[\tan (x)=\dfrac{opposite}{adjacent}=\dfrac{P}{Q}\]
Now, by Pythagoras theorem,
We know,
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\]
After substituting properly,
\[R=\sqrt{{{3}^{2}}+{{4}^{2}}}\]
Therefore,
\[R=5\] …………………. (1)
Now, to calculate the angle between vector P and vector Q.
We know from triangle rule of vectors
\[R=\sqrt{{{P}^{2}}+{{Q}^{2}}+2PQ\cos \theta }\]
After substituting values and from (1)
We get,
\[{{R}^{2}}={{3}^{2}}+{{4}^{2}}+2\times 3\times 4\cos \theta \]
On solving,
We get
\[25=25+24\cos \theta \]
Therefore,
\[\theta ={{\cos }^{-1}}(0)\]
Therefore,
\[\theta =90{}^\circ \]
Therefore, the correct answer is option D.
Note: In mathematics, the Pythagorean theorem, also known as Pythagoras's theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides. In Pythagorean theorem, the hypotenuse is given by equation,
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\].
Formula used: -\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\]
Where,
C is the hypotenuse
A and B are opposite and adjacent sides.
Complete step-by-step solution:
It is given that the magnitude of resultant vector P makes an angle of \[{{\tan }^{-1}}\left(\dfrac{3}{4} \right)\].
This means that the ratio of the two given vectors is \[\dfrac{3}{4}\]
Therefore,
We know that,
\[\tan (x)=\dfrac{opposite}{adjacent}=\dfrac{P}{Q}\]
Now, by Pythagoras theorem,
We know,
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\]
After substituting properly,
\[R=\sqrt{{{3}^{2}}+{{4}^{2}}}\]
Therefore,
\[R=5\] …………………. (1)
Now, to calculate the angle between vector P and vector Q.
We know from triangle rule of vectors
\[R=\sqrt{{{P}^{2}}+{{Q}^{2}}+2PQ\cos \theta }\]
After substituting values and from (1)
We get,
\[{{R}^{2}}={{3}^{2}}+{{4}^{2}}+2\times 3\times 4\cos \theta \]
On solving,
We get
\[25=25+24\cos \theta \]
Therefore,
\[\theta ={{\cos }^{-1}}(0)\]
Therefore,
\[\theta =90{}^\circ \]
Therefore, the correct answer is option D.
Note: In mathematics, the Pythagorean theorem, also known as Pythagoras's theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides. In Pythagorean theorem, the hypotenuse is given by equation,
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE