
The manufacturer who produces medicines bottles finds that 0.1% of the bottles are defective. The bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producer of bottles. Using Poisson distribution, the number of boxes with no defective bottle is ;
A.$ 100 \times {e^{ - 0.1}} $
B.$ 100 \times {e^{ - 0.5}} $
C.$ 100 \times {e^{ - 0.05}} $
D.$ 100 \times {e^{ - 0.01}} $
Answer
593.7k+ views
Hint: The Poisson distribution is the discrete probability distribution of the number of events occurring in a given time period, given the average number of times the event occurs over that time period.
Complete step by step solution :
According to the question:
Probability of getting a defective bottle (p) = $ 0.1\% = \dfrac{{0.1}}{{100}} = 0.001 $
And number of bottles in box (n) = 500
Therefore according to the poisson distribution
$ \lambda = np = 500 \times 0.001 = 0.5 $
And number of boxes (N) = 100
And from poisson distribution we know that
P(x) $ = \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}} $
Therefore number of boxes with no defective bottles (x=0) =
$
100 \times p(x = 0) \\
= 100 \times \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}}...........(x = 0) \\
= 100 \times \dfrac{{{e^{ - 0.5}}({{0.5}^0})}}{{0!}} \\
= 100 \times {e^{ - 0.5}} \\
$
Hence the required number of boxes with 0 defective bottles = $ 100 \times {e^{ - 0.5}} $
Note:In poisson distribution $ \lambda $= np here $ \lambda $ is the mean of the given distribution and n is the number of units.
Complete step by step solution :
According to the question:
Probability of getting a defective bottle (p) = $ 0.1\% = \dfrac{{0.1}}{{100}} = 0.001 $
And number of bottles in box (n) = 500
Therefore according to the poisson distribution
$ \lambda = np = 500 \times 0.001 = 0.5 $
And number of boxes (N) = 100
And from poisson distribution we know that
P(x) $ = \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}} $
Therefore number of boxes with no defective bottles (x=0) =
$
100 \times p(x = 0) \\
= 100 \times \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}}...........(x = 0) \\
= 100 \times \dfrac{{{e^{ - 0.5}}({{0.5}^0})}}{{0!}} \\
= 100 \times {e^{ - 0.5}} \\
$
Hence the required number of boxes with 0 defective bottles = $ 100 \times {e^{ - 0.5}} $
Note:In poisson distribution $ \lambda $= np here $ \lambda $ is the mean of the given distribution and n is the number of units.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

