Answer
Verified
449.7k+ views
Hint: The amount of oxalic acid can be calculated by multiplying the molecular weight of the oxalic acid to the molarity of the solution and volume of the solution in liters. The molarity of the acid can be calculated by dividing the normality of the solution by the basicity.
Complete step by step solution:
The amount of oxalic acid can be calculated by multiplying the molecular weight of the oxalic acid to the molarity of the solution and volume of the solution in liters.
Given the formula of oxalic acid crystals is ${{H}_{2}}{{C}_{2}}{{O}_{4}}.2{{H}_{2}}O$ so, the molecular mass of the oxalic acid is:
$=2(1)+2(12)+4(16)+2(18)$
$=2+24+64+36$
$=126\text{ g/mol}$
So the molecular mass of oxalic acid is 126 g/mol.
The molarity of the acid can be calculated by dividing the normality of the solution by the basicity.
The basicity of the oxalic acid is 2 and the normality of the solution is 0.2 given in the question. So the molarity of the solution will be:
$Molarity=\dfrac{0.2}{2}=0.1\text{ M}$
Molarity is 0.1.
Given the volume of the solution is 50 mL, so in liters, it will be 0.05 L.
Now we have all the three factors, so we can calculate the amount of oxalic as:
$\implies 126\text{ x 0}\text{.1 x 0}\text{.05}$
$\therefore 0.63\text{ g}$
So the amount of oxalic acid required is 0.63 g.
Therefore, the correct answer is an option (C)- 0.63 g.
Note: Basicity of the compound is equal to the number of hydrogen ions that can be displaced in the solution, so the oxalic acid has 2 displaceable hydrogen ions. Therefore, its basicity is 2.
Complete step by step solution:
The amount of oxalic acid can be calculated by multiplying the molecular weight of the oxalic acid to the molarity of the solution and volume of the solution in liters.
Given the formula of oxalic acid crystals is ${{H}_{2}}{{C}_{2}}{{O}_{4}}.2{{H}_{2}}O$ so, the molecular mass of the oxalic acid is:
$=2(1)+2(12)+4(16)+2(18)$
$=2+24+64+36$
$=126\text{ g/mol}$
So the molecular mass of oxalic acid is 126 g/mol.
The molarity of the acid can be calculated by dividing the normality of the solution by the basicity.
The basicity of the oxalic acid is 2 and the normality of the solution is 0.2 given in the question. So the molarity of the solution will be:
$Molarity=\dfrac{0.2}{2}=0.1\text{ M}$
Molarity is 0.1.
Given the volume of the solution is 50 mL, so in liters, it will be 0.05 L.
Now we have all the three factors, so we can calculate the amount of oxalic as:
$\implies 126\text{ x 0}\text{.1 x 0}\text{.05}$
$\therefore 0.63\text{ g}$
So the amount of oxalic acid required is 0.63 g.
Therefore, the correct answer is an option (C)- 0.63 g.
Note: Basicity of the compound is equal to the number of hydrogen ions that can be displaced in the solution, so the oxalic acid has 2 displaceable hydrogen ions. Therefore, its basicity is 2.
Recently Updated Pages
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
During the electrolysis of sodium ethanoate the gas class 11 maths JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE