
What should be the mass of the photon of sodium if its wavelength is 5894$\mathop {\rm A}\limits^ \circ $? (The velocity of light is $3 \times {10^8}$ metre/second and the value of h is $6.6252 \times {10^{ - 34}}kg.{m^2}/s$.)
(A) $3.75 \times {10^{ - 36}}$ g
(B) $3.75 \times {10^{ - 36}}$ kg
(C) $1.25 \times {10^{ - 36}}$ kg
(D) $1.25 \times {10^{ - 36}}$ g
Answer
483k+ views
Hint: The question gives us the value of wavelength, speed and Planck’s constant. We will calculate the mass of the photon using de Broglie’s equation:
$\lambda = \dfrac{h}{{mc}}$
Complete step by step solution:
-First of all, let us talk about the de-Broglie equation for a photon.
The de-Broglie equation describes the wave nature of an electron. An electromagnetic equation exhibits dual nature: of a particle because it has momentum and wave because it has both wavelength and frequency. The de-Broglie equation exhibits the relationship between the momentum of a particle and its wavelength and so the wavelength is known as de-Broglie wavelength. Mathematically this equation for a photon is:
$\lambda = \dfrac{h}{{mc}}$-------- (1)
Where, λ = de-Broglie wavelength;
$h$ = Planck’s constant = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$;
$c$ = velocity of light = $3 \times {10^8}$ metre/second;
$m$ = mass of particle.
-The question gives us the value of wavelength is 5894$\mathop {\rm A}\limits^ \circ $ and we need to calculate the mass of the photon. We will do this using the de-Broglie equation (1):
$λ$ = 5894$\mathop {\rm A}\limits^ \circ $ = $5894 \times {10^{ - 10}}$ m
$h$ = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$
$c$ = $3 \times {10^8}$ metre/second
$\lambda = \dfrac{h}{{mc}}$
$5894 \times {10^{ - 10}} = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{m \times 3 \times {{10}^8}}}$
$m = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{3 \times {{10}^8} \times 5894 \times {{10}^{ - 10}}}}$
= $\dfrac{{6.6252 \times {{10}^{ - 34}}}}{{17682 \times {{10}^{ - 2}}}}$
= $3.746 \times {10^{ - 36}}$ kg
Hence we can now tell that the mass of the photon of sodium will be $3.746 \times {10^{ - 36}}$ kg.
So, the correct option will be: $3.746 \times {10^{ - 36}}$ kg.
Note: The mass ‘m’ we calculate here is the relativistic mass and not the rest mass because the rest mass of a photon is always zero (0).
Also if a particle moves with velocity v, the momentum of the particle will be: p = mv and the de-Broglie wavelength will be:
$\lambda = \dfrac{h}{{mv}}$
$\lambda = \dfrac{h}{{mc}}$
Complete step by step solution:
-First of all, let us talk about the de-Broglie equation for a photon.
The de-Broglie equation describes the wave nature of an electron. An electromagnetic equation exhibits dual nature: of a particle because it has momentum and wave because it has both wavelength and frequency. The de-Broglie equation exhibits the relationship between the momentum of a particle and its wavelength and so the wavelength is known as de-Broglie wavelength. Mathematically this equation for a photon is:
$\lambda = \dfrac{h}{{mc}}$-------- (1)
Where, λ = de-Broglie wavelength;
$h$ = Planck’s constant = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$;
$c$ = velocity of light = $3 \times {10^8}$ metre/second;
$m$ = mass of particle.
-The question gives us the value of wavelength is 5894$\mathop {\rm A}\limits^ \circ $ and we need to calculate the mass of the photon. We will do this using the de-Broglie equation (1):
$λ$ = 5894$\mathop {\rm A}\limits^ \circ $ = $5894 \times {10^{ - 10}}$ m
$h$ = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$
$c$ = $3 \times {10^8}$ metre/second
$\lambda = \dfrac{h}{{mc}}$
$5894 \times {10^{ - 10}} = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{m \times 3 \times {{10}^8}}}$
$m = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{3 \times {{10}^8} \times 5894 \times {{10}^{ - 10}}}}$
= $\dfrac{{6.6252 \times {{10}^{ - 34}}}}{{17682 \times {{10}^{ - 2}}}}$
= $3.746 \times {10^{ - 36}}$ kg
Hence we can now tell that the mass of the photon of sodium will be $3.746 \times {10^{ - 36}}$ kg.
So, the correct option will be: $3.746 \times {10^{ - 36}}$ kg.
Note: The mass ‘m’ we calculate here is the relativistic mass and not the rest mass because the rest mass of a photon is always zero (0).
Also if a particle moves with velocity v, the momentum of the particle will be: p = mv and the de-Broglie wavelength will be:
$\lambda = \dfrac{h}{{mv}}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
