
The maximum number of terms in a polynomial of degree 10 is:
(a). 9
(b). 10
(c). 11
(d). 1
Answer
596.1k+ views
Hint:We should know that all the algebraic expressions with whole numbers as the exponents of the variable are called polynomials.
The highest power (or exponent) of a variable in the polynomial is called degree.
A polynomial of degree one is called linear polynomial. E.g.: $3x$.
A polynomial of degree two is called a quadratic polynomial. E.g.: $2y + 7$.
A polynomial of degree three is called a cubic polynomial. E.g.: $\mathop z\nolimits^2 + 3z + 5$.
Complete step-by-step answer:
A polynomial \[p\left( x \right)\]in one variable x is an algebraic expression in x of the form
$p\left( x \right) = \mathop a\nolimits_n \mathop x\nolimits^n + \mathop a\nolimits_{n - 1} \mathop x\nolimits^{n - 1} + ... + \mathop a\nolimits_2 \mathop x\nolimits^2 + \mathop a\nolimits_1 x + \mathop a\nolimits_0 $
Where \[\mathop a\nolimits_0 ,\mathop {{\text{ }}a}\nolimits_1 ,\mathop {{\text{ }}a}\nolimits_2 ,...\mathop {,{\text{ }}a}\nolimits_n \]are constants and \[\mathop a\nolimits_n \ne 0\].
\[\mathop a\nolimits_0 ,\mathop {{\text{ }}a}\nolimits_1 ,\mathop {{\text{ }}a}\nolimits_2 ,...\mathop {,{\text{ }}a}\nolimits_n \]are respectively coefficients of $\mathop x\nolimits^0 ,\mathop x\nolimits^1 ,\mathop x\nolimits^2 ,...,\mathop x\nolimits^n $, and
$n$is called the degree of the polynomial.
Each of $\mathop a\nolimits_n \mathop x\nolimits^n ,\mathop a\nolimits_{n - 1} \mathop x\nolimits^{n - 1} ,...,\mathop a\nolimits_2 \mathop x\nolimits^2 ,\mathop a\nolimits_1 x,\mathop a\nolimits_0 $ with \[\mathop a\nolimits_n \ne 0\] is called a term of the polynomial $p\left( x \right)$.
Step 2: It is given to find the number of terms in the polynomial of degree 10.
This implies degree $n = 10$ in polynomial $p\left( x \right)$.
Step 3: Substitute the value of $n = 10$ in polynomial $p\left( x \right)$
$p\left( x \right) = \mathop a\nolimits_{10} \mathop x\nolimits^{10} + \mathop a\nolimits_9 \mathop x\nolimits^9 + \mathop a\nolimits_8 \mathop x\nolimits^8 + \mathop a\nolimits_7 \mathop x\nolimits^7 + \mathop a\nolimits_6 \mathop x\nolimits^6 + \mathop a\nolimits_5 \mathop x\nolimits^5 + \mathop a\nolimits_4 \mathop x\nolimits^4 + \mathop a\nolimits_3 \mathop x\nolimits^3 + \mathop a\nolimits_2 \mathop x\nolimits^2 + \mathop a\nolimits_1 x + \mathop a\nolimits_0 $
Where \[\mathop a\nolimits_0 ,{\text{ }}\mathop a\nolimits_1 ,{\text{ }}\mathop a\nolimits_2 ,{\text{ }}\mathop a\nolimits_3 ,{\text{ }}\mathop a\nolimits_4 ,{\text{ }}\mathop a\nolimits_5 ,{\text{ }}\mathop a\nolimits_6 ,\mathop {{\text{ }}a}\nolimits_7 ,{\text{ }}\mathop a\nolimits_8 ,{\text{ }}\mathop {\mathop a\nolimits_9 ,{\text{ }}a}\nolimits_{10} \] are constants and \[\mathop a\nolimits_n \ne 0\].
\[\mathop a\nolimits_0 ,{\text{ }}\mathop a\nolimits_1 ,{\text{ }}\mathop a\nolimits_2 ,{\text{ }}\mathop a\nolimits_3 ,{\text{ }}\mathop a\nolimits_4 ,{\text{ }}\mathop a\nolimits_5 ,{\text{ }}\mathop a\nolimits_6 ,\mathop {{\text{ }}a}\nolimits_7 ,{\text{ }}\mathop a\nolimits_8 ,{\text{ }}\mathop {\mathop a\nolimits_9 ,{\text{ }}a}\nolimits_{10} \] are respectively coefficients of $\mathop x\nolimits^0 ,\mathop x\nolimits^1 ,\mathop x\nolimits^2 ,\mathop x\nolimits^3 ,\mathop x\nolimits^4 ,\mathop x\nolimits^5 ,\mathop x\nolimits^6 ,\mathop x\nolimits^7 ,\mathop x\nolimits^8 ,\mathop x\nolimits^9 ,\mathop x\nolimits^{10} $.
Each of \[\mathop a\nolimits_{10} \mathop x\nolimits^{10} ,{\text{ }}\mathop a\nolimits_9 \mathop x\nolimits^9 ,\mathop {{\text{ }}a}\nolimits_8 \mathop x\nolimits^8 ,{\text{ }}\mathop a\nolimits_7 \mathop x\nolimits^7 ,{\text{ }}\mathop a\nolimits_6 \mathop x\nolimits^6 ,{\text{ }}\mathop a\nolimits_5 \mathop x\nolimits^5 ,\;\mathop a\nolimits_4 \mathop x\nolimits^4 ,\;\mathop a\nolimits_3 \mathop x\nolimits^3 ,\;\mathop a\nolimits_2 \mathop x\nolimits^2 ,\;\mathop a\nolimits_1 x,\;\mathop a\nolimits_0 \] are the terms of the polynomial $p\left( x \right)$.
Step 4: Count the numbers of terms in polynomial $p\left( x \right)$
Numbers of terms = 11
Final answer: There are 11 terms in the polynomial of degree 10. The correct option is (C).
Note: Following results can be concluded from the above solution.
Numbers of terms in the polynomial of degree $n = 1$is 2.
The Number of terms in the polynomial of degree $n = 2$is 3.
Therefore, the number of terms in the polynomial of degree $n$is $n + 1$.
A polynomial can have any (finite) numbers of terms. For instance, $\mathop x\nolimits^{150} + \mathop x\nolimits^{149} + ... + \mathop x\nolimits^2 + \mathop a\nolimits_1 x + \mathop a\nolimits_0 $ is a polynomial with 151 terms.
The degree of the non-zero polynomial is 0. For example, degree of polynomial,
$p\left( x \right)$= 7, degree is 0.
The highest power (or exponent) of a variable in the polynomial is called degree.
A polynomial of degree one is called linear polynomial. E.g.: $3x$.
A polynomial of degree two is called a quadratic polynomial. E.g.: $2y + 7$.
A polynomial of degree three is called a cubic polynomial. E.g.: $\mathop z\nolimits^2 + 3z + 5$.
Complete step-by-step answer:
A polynomial \[p\left( x \right)\]in one variable x is an algebraic expression in x of the form
$p\left( x \right) = \mathop a\nolimits_n \mathop x\nolimits^n + \mathop a\nolimits_{n - 1} \mathop x\nolimits^{n - 1} + ... + \mathop a\nolimits_2 \mathop x\nolimits^2 + \mathop a\nolimits_1 x + \mathop a\nolimits_0 $
Where \[\mathop a\nolimits_0 ,\mathop {{\text{ }}a}\nolimits_1 ,\mathop {{\text{ }}a}\nolimits_2 ,...\mathop {,{\text{ }}a}\nolimits_n \]are constants and \[\mathop a\nolimits_n \ne 0\].
\[\mathop a\nolimits_0 ,\mathop {{\text{ }}a}\nolimits_1 ,\mathop {{\text{ }}a}\nolimits_2 ,...\mathop {,{\text{ }}a}\nolimits_n \]are respectively coefficients of $\mathop x\nolimits^0 ,\mathop x\nolimits^1 ,\mathop x\nolimits^2 ,...,\mathop x\nolimits^n $, and
$n$is called the degree of the polynomial.
Each of $\mathop a\nolimits_n \mathop x\nolimits^n ,\mathop a\nolimits_{n - 1} \mathop x\nolimits^{n - 1} ,...,\mathop a\nolimits_2 \mathop x\nolimits^2 ,\mathop a\nolimits_1 x,\mathop a\nolimits_0 $ with \[\mathop a\nolimits_n \ne 0\] is called a term of the polynomial $p\left( x \right)$.
Step 2: It is given to find the number of terms in the polynomial of degree 10.
This implies degree $n = 10$ in polynomial $p\left( x \right)$.
Step 3: Substitute the value of $n = 10$ in polynomial $p\left( x \right)$
$p\left( x \right) = \mathop a\nolimits_{10} \mathop x\nolimits^{10} + \mathop a\nolimits_9 \mathop x\nolimits^9 + \mathop a\nolimits_8 \mathop x\nolimits^8 + \mathop a\nolimits_7 \mathop x\nolimits^7 + \mathop a\nolimits_6 \mathop x\nolimits^6 + \mathop a\nolimits_5 \mathop x\nolimits^5 + \mathop a\nolimits_4 \mathop x\nolimits^4 + \mathop a\nolimits_3 \mathop x\nolimits^3 + \mathop a\nolimits_2 \mathop x\nolimits^2 + \mathop a\nolimits_1 x + \mathop a\nolimits_0 $
Where \[\mathop a\nolimits_0 ,{\text{ }}\mathop a\nolimits_1 ,{\text{ }}\mathop a\nolimits_2 ,{\text{ }}\mathop a\nolimits_3 ,{\text{ }}\mathop a\nolimits_4 ,{\text{ }}\mathop a\nolimits_5 ,{\text{ }}\mathop a\nolimits_6 ,\mathop {{\text{ }}a}\nolimits_7 ,{\text{ }}\mathop a\nolimits_8 ,{\text{ }}\mathop {\mathop a\nolimits_9 ,{\text{ }}a}\nolimits_{10} \] are constants and \[\mathop a\nolimits_n \ne 0\].
\[\mathop a\nolimits_0 ,{\text{ }}\mathop a\nolimits_1 ,{\text{ }}\mathop a\nolimits_2 ,{\text{ }}\mathop a\nolimits_3 ,{\text{ }}\mathop a\nolimits_4 ,{\text{ }}\mathop a\nolimits_5 ,{\text{ }}\mathop a\nolimits_6 ,\mathop {{\text{ }}a}\nolimits_7 ,{\text{ }}\mathop a\nolimits_8 ,{\text{ }}\mathop {\mathop a\nolimits_9 ,{\text{ }}a}\nolimits_{10} \] are respectively coefficients of $\mathop x\nolimits^0 ,\mathop x\nolimits^1 ,\mathop x\nolimits^2 ,\mathop x\nolimits^3 ,\mathop x\nolimits^4 ,\mathop x\nolimits^5 ,\mathop x\nolimits^6 ,\mathop x\nolimits^7 ,\mathop x\nolimits^8 ,\mathop x\nolimits^9 ,\mathop x\nolimits^{10} $.
Each of \[\mathop a\nolimits_{10} \mathop x\nolimits^{10} ,{\text{ }}\mathop a\nolimits_9 \mathop x\nolimits^9 ,\mathop {{\text{ }}a}\nolimits_8 \mathop x\nolimits^8 ,{\text{ }}\mathop a\nolimits_7 \mathop x\nolimits^7 ,{\text{ }}\mathop a\nolimits_6 \mathop x\nolimits^6 ,{\text{ }}\mathop a\nolimits_5 \mathop x\nolimits^5 ,\;\mathop a\nolimits_4 \mathop x\nolimits^4 ,\;\mathop a\nolimits_3 \mathop x\nolimits^3 ,\;\mathop a\nolimits_2 \mathop x\nolimits^2 ,\;\mathop a\nolimits_1 x,\;\mathop a\nolimits_0 \] are the terms of the polynomial $p\left( x \right)$.
Step 4: Count the numbers of terms in polynomial $p\left( x \right)$
Numbers of terms = 11
Final answer: There are 11 terms in the polynomial of degree 10. The correct option is (C).
Note: Following results can be concluded from the above solution.
Numbers of terms in the polynomial of degree $n = 1$is 2.
The Number of terms in the polynomial of degree $n = 2$is 3.
Therefore, the number of terms in the polynomial of degree $n$is $n + 1$.
A polynomial can have any (finite) numbers of terms. For instance, $\mathop x\nolimits^{150} + \mathop x\nolimits^{149} + ... + \mathop x\nolimits^2 + \mathop a\nolimits_1 x + \mathop a\nolimits_0 $ is a polynomial with 151 terms.
The degree of the non-zero polynomial is 0. For example, degree of polynomial,
$p\left( x \right)$= 7, degree is 0.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

