
The maximum work (in \[kJ\,mo{{l}^{-1}}\]) that can be derived from complete combustion
of 1 mol of CO at 298 K and 1 atm is [ Standard enthalpy of combustion of CO = \[-283.0\,kJ\,mo{{l}^{-1}}\]; standard molar entropies at 298 K : \[{{S}_{{{O}_{2}}}}=205.1\,J\,mo{{l}^{-1}}\], \[{{S}_{CO}}=197.7\,J\,mo{{l}^{-1}}\], \[{{S}_{C{{O}_{2}}}}=213.7\,J\,mo{{l}^{-1}}\]]
a) 257
b) 227
c) 57
d) 127
Answer
596.4k+ views
Hint: The Gibbs free energy of a system is given as the sum of its enthalpy (H) with the product of the temperature (T in Kelvin) and the entropy (S) of the system:
G = H - TS
Free energy of reaction
\[\Delta G=\Delta H-T\Delta S\]
Standard-state free energy of reaction
\[\Delta {{G}^{\circ }}=\Delta {{H}^{\circ }}-T\Delta {{S}^{\circ }}\]
Complete answer: We have been given in the question that the:
Standard enthalpy of combustion of CO = \[-283.0\,kJ\,mo{{l}^{-1}}\]
Standard molar entropies at 298 K
\[{{S}_{{{O}_{2}}}}=205.1\,J\,mo{{l}^{-1}}\]
\[{{S}_{CO}}=197.7\,J\,mo{{l}^{-1}}\]
\[{{S}_{C{{O}_{2}}}}=213.7\,J\,mo{{l}^{-1}}\]
Now the reaction for complete combustion of Carbon monoxide can be given by and the Standard enthalpy of the reaction as provided:
\[CO(g)+\frac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\] \[\Delta {{H}^{\circ }}_{rxn}=-283.0\,kJ\,mo{{l}^{-1}}\]
After that we will calculate the standard entropy change for the reaction for the reaction, which can be given as:
\[\Delta {{S}^{\circ }}_{rxn}={{S}_{C{{O}_{2}}}}-\left[ {{S}_{CO}}+\frac{1}{2}({{S}_{{{O}_{2}}}}) \right]\]
Putting the values in the equation above,
\[\Delta {{S}^{\circ }}_{rxn}=213.7\,J\,mo{{l}^{-1}}-\left[ 197.7\,J\,mo{{l}^{-1}}+\frac{1}{2}(205.1\,J\,mo{{l}^{-1}}) \right]\]
\[\Delta {{S}^{\circ }}_{rxn}=-86.5\,J\,mo{{l}^{-1}}\]
Now to determine the maximum work, \[\Delta {{G}^{\circ }}_{rxn}\], for the reaction at 298 K we can write the Gibbs free energy as:
\[\Delta {{G}^{\circ }}_{rxn}=\Delta {{H}^{\circ }}_{rxn}-T\Delta {{S}^{\circ }}_{rxn}\]
Since, \[\Delta {{H}^{\circ }}_{rxn}=-283.0\,kJ\,mo{{l}^{-1}}=-283.0\,kJ\,mo{{l}^{-1}}\times \frac{1000J}{kJ}=283,000J\,mo{{l}^{-1}}\]
Temperature T = 298 K
\[\Delta {{S}^{\circ }}_{rxn}=-86.5\,J\,mo{{l}^{-1}}\]
Putting the values in equation,
\[\Delta {{G}^{\circ }}_{rxn}=283,000J\,mo{{l}^{-1}}-(293\,K)(-86.5\,J\,mo{{l}^{-1}})\]
\[\Delta {{G}^{\circ }}_{rxn}=257,208\,J\,mo{{l}^{-1}}\]
\[\Delta {{G}^{\circ }}_{rxn}=257,208\,J\,mo{{l}^{-1}}\times \frac{1kJ}{1000J}\]
\[\Delta {{G}^{\circ }}_{rxn}=257.2\,kJ\,mo{{l}^{-1}}\approx 257\,kJ\,mo{{l}^{-1}}\]
Therefore, the maximum work \[\Delta {{G}^{\circ }}_{rxn}=257\,kJ\,mo{{l}^{-1}}\].
So, the correct option is (a).
Note: In this case, we can also determine whether the reaction is spontaneous, non-spontaneous or at equilibrium.
>If a reaction is favourable for both enthalpy (\[\Delta {{H}^{\circ }}\] < 0) and entropy (\[\Delta {{S}^{\circ }}\]> 0), then the reaction will be spontaneous (\[\Delta {{G}^{\circ }}\]< 0) at any temperature.
>If a reaction is unfavourable for both enthalpy (\[\Delta {{H}^{\circ }}\] > 0) and entropy (\[\Delta {{S}^{\circ }}\]< 0), then the reaction will be non-spontaneous (\[\Delta {{G}^{\circ }}\]> 0) at any temperature.
>If a reaction is favourable for only one of either entropy or enthalpies, the standard-state free energy equation must be used to determine whether the reaction is spontaneous or not.
G = H - TS
Free energy of reaction
\[\Delta G=\Delta H-T\Delta S\]
Standard-state free energy of reaction
\[\Delta {{G}^{\circ }}=\Delta {{H}^{\circ }}-T\Delta {{S}^{\circ }}\]
Complete answer: We have been given in the question that the:
Standard enthalpy of combustion of CO = \[-283.0\,kJ\,mo{{l}^{-1}}\]
Standard molar entropies at 298 K
\[{{S}_{{{O}_{2}}}}=205.1\,J\,mo{{l}^{-1}}\]
\[{{S}_{CO}}=197.7\,J\,mo{{l}^{-1}}\]
\[{{S}_{C{{O}_{2}}}}=213.7\,J\,mo{{l}^{-1}}\]
Now the reaction for complete combustion of Carbon monoxide can be given by and the Standard enthalpy of the reaction as provided:
\[CO(g)+\frac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\] \[\Delta {{H}^{\circ }}_{rxn}=-283.0\,kJ\,mo{{l}^{-1}}\]
After that we will calculate the standard entropy change for the reaction for the reaction, which can be given as:
\[\Delta {{S}^{\circ }}_{rxn}={{S}_{C{{O}_{2}}}}-\left[ {{S}_{CO}}+\frac{1}{2}({{S}_{{{O}_{2}}}}) \right]\]
Putting the values in the equation above,
\[\Delta {{S}^{\circ }}_{rxn}=213.7\,J\,mo{{l}^{-1}}-\left[ 197.7\,J\,mo{{l}^{-1}}+\frac{1}{2}(205.1\,J\,mo{{l}^{-1}}) \right]\]
\[\Delta {{S}^{\circ }}_{rxn}=-86.5\,J\,mo{{l}^{-1}}\]
Now to determine the maximum work, \[\Delta {{G}^{\circ }}_{rxn}\], for the reaction at 298 K we can write the Gibbs free energy as:
\[\Delta {{G}^{\circ }}_{rxn}=\Delta {{H}^{\circ }}_{rxn}-T\Delta {{S}^{\circ }}_{rxn}\]
Since, \[\Delta {{H}^{\circ }}_{rxn}=-283.0\,kJ\,mo{{l}^{-1}}=-283.0\,kJ\,mo{{l}^{-1}}\times \frac{1000J}{kJ}=283,000J\,mo{{l}^{-1}}\]
Temperature T = 298 K
\[\Delta {{S}^{\circ }}_{rxn}=-86.5\,J\,mo{{l}^{-1}}\]
Putting the values in equation,
\[\Delta {{G}^{\circ }}_{rxn}=283,000J\,mo{{l}^{-1}}-(293\,K)(-86.5\,J\,mo{{l}^{-1}})\]
\[\Delta {{G}^{\circ }}_{rxn}=257,208\,J\,mo{{l}^{-1}}\]
\[\Delta {{G}^{\circ }}_{rxn}=257,208\,J\,mo{{l}^{-1}}\times \frac{1kJ}{1000J}\]
\[\Delta {{G}^{\circ }}_{rxn}=257.2\,kJ\,mo{{l}^{-1}}\approx 257\,kJ\,mo{{l}^{-1}}\]
Therefore, the maximum work \[\Delta {{G}^{\circ }}_{rxn}=257\,kJ\,mo{{l}^{-1}}\].
So, the correct option is (a).
Note: In this case, we can also determine whether the reaction is spontaneous, non-spontaneous or at equilibrium.
>If a reaction is favourable for both enthalpy (\[\Delta {{H}^{\circ }}\] < 0) and entropy (\[\Delta {{S}^{\circ }}\]> 0), then the reaction will be spontaneous (\[\Delta {{G}^{\circ }}\]< 0) at any temperature.
>If a reaction is unfavourable for both enthalpy (\[\Delta {{H}^{\circ }}\] > 0) and entropy (\[\Delta {{S}^{\circ }}\]< 0), then the reaction will be non-spontaneous (\[\Delta {{G}^{\circ }}\]> 0) at any temperature.
>If a reaction is favourable for only one of either entropy or enthalpies, the standard-state free energy equation must be used to determine whether the reaction is spontaneous or not.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

