Answer
Verified
433.2k+ views
Hint: Apply the formula for mean deviation given as: - Mean deviation = \[\dfrac{1}{n}\sum\limits_{i=1}^{n}{\left| \overline{x}-{{x}_{i}} \right|}\], where ‘n’ is the number of observations, \[\overline{x}\] is the mean of the given data and \[{{x}_{i}}\] are the given observations where i = 1, 2, ……, n. To find the value of mean use the formula \[\overline{x}=\dfrac{\sum{{{x}_{i}}}}{n}\]. Substitute all the values in the above formula with n = 7 to get the required mean deviation.
Complete step-by-step answer:
Here, we have been provided with the data 3, 10, 10, 4, 7, 10, 5 and we are asked to determine the mean deviation of these data from its mean.
Now, we know that the formula used to calculate the mean deviation is given as: - Mean deviation = \[\dfrac{1}{n}\sum\limits_{i=1}^{n}{\left| \overline{x}-{{x}_{i}} \right|}\], where \[\overline{x}\] is the mean of the given data, ‘n’ is the number of observations and \[{{x}_{i}}\] are the given data where i = 1, 2, .….,n. So, to find the mean deviation we need to find the mean of the given data first. The mean is given by the formula: - \[\overline{x}=\dfrac{\sum{{{x}_{i}}}}{n}\]. On counting the number of data given to us, we conclude that n = 7. So, we get,
\[\begin{align}
& \Rightarrow \overline{x}=\dfrac{3+10+10+4+7+10+5}{7} \\
& \Rightarrow \overline{x}=\dfrac{49}{7} \\
& \Rightarrow \overline{x}=7 \\
\end{align}\]
Therefore, the mean of the given data is 7. Now, substituting the value of mean in the formula for mean deviation, we get,
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\sum\limits_{i=1}^{7}{\left| 7-{{x}_{i}} \right|}\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 7-3 \right|+\left| 7-10 \right|+\left| 7-10 \right|+\left| 7-4 \right|+\left| 7-7 \right|+\left| 7-10 \right|+\left| 7-5 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 4 \right|+\left| -3 \right|+\left| -3 \right|+\left| 3 \right|+\left| 0 \right|+\left| -3 \right|+\left| 2 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 4+3+3+3+0+3+2 \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 18 \right]\]
\[\Rightarrow \] Mean deviation = 2.57
So, the correct answer is “Option b”.
Note: One must remember the formulas of mean and mean deviation to solve the above question. Do not forget to consider the modulus sign otherwise you will get the value of mean deviation equal to 0 and it will be considered as incorrect. Remember that the modulus of any number, whether negative or positive, is always positive. Count the number of observations carefully.
Complete step-by-step answer:
Here, we have been provided with the data 3, 10, 10, 4, 7, 10, 5 and we are asked to determine the mean deviation of these data from its mean.
Now, we know that the formula used to calculate the mean deviation is given as: - Mean deviation = \[\dfrac{1}{n}\sum\limits_{i=1}^{n}{\left| \overline{x}-{{x}_{i}} \right|}\], where \[\overline{x}\] is the mean of the given data, ‘n’ is the number of observations and \[{{x}_{i}}\] are the given data where i = 1, 2, .….,n. So, to find the mean deviation we need to find the mean of the given data first. The mean is given by the formula: - \[\overline{x}=\dfrac{\sum{{{x}_{i}}}}{n}\]. On counting the number of data given to us, we conclude that n = 7. So, we get,
\[\begin{align}
& \Rightarrow \overline{x}=\dfrac{3+10+10+4+7+10+5}{7} \\
& \Rightarrow \overline{x}=\dfrac{49}{7} \\
& \Rightarrow \overline{x}=7 \\
\end{align}\]
Therefore, the mean of the given data is 7. Now, substituting the value of mean in the formula for mean deviation, we get,
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\sum\limits_{i=1}^{7}{\left| 7-{{x}_{i}} \right|}\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 7-3 \right|+\left| 7-10 \right|+\left| 7-10 \right|+\left| 7-4 \right|+\left| 7-7 \right|+\left| 7-10 \right|+\left| 7-5 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 4 \right|+\left| -3 \right|+\left| -3 \right|+\left| 3 \right|+\left| 0 \right|+\left| -3 \right|+\left| 2 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 4+3+3+3+0+3+2 \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 18 \right]\]
\[\Rightarrow \] Mean deviation = 2.57
So, the correct answer is “Option b”.
Note: One must remember the formulas of mean and mean deviation to solve the above question. Do not forget to consider the modulus sign otherwise you will get the value of mean deviation equal to 0 and it will be considered as incorrect. Remember that the modulus of any number, whether negative or positive, is always positive. Count the number of observations carefully.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India