Answer
Verified
452.4k+ views
Hint: The mean free path is the average distance travelled by a moving particle between successive collisions, which modifies its direction or energy or other particle properties.
The various factors such as the radius of the molecule, space between molecules..,I.e., density, pressure, temperature etc.. all of which has to be carefully accounted into the formula.
Complete step by step answer:
Here, in this question, it’s specifically asking about the dependency of mean free path on the radius of the molecule. But we’ll need other parameters, and relationships to derive from an equation.
Consider a molecule with diameter with an average molecular speed of v.
From here, we can say that the molecule will undergo several collisions with many molecules in its path in time ____t, the area of probable collision will be,
\[{A_{collision}} = \pi {(d)^2}\]
the volume of probable collision before it collides with other molecules,
\[{V_{collision}} = v \times {A_{collision}} = v\pi {(d)^2}\]
If n is the number of molecules in that volume, then the time between two successive collisions is given by, the time between two successive collisions is given by,
\[\tau = \dfrac{1}{{nv\pi {{(d)}^2}}}\]
The average distance between two successive collisions, called the mean free path l is given by the product of mean collision time and mean velocity of the molecule, I.e.,
$ l = \tau v \\ $
$ \implies l = \dfrac{1}{{nv\pi {{(d)}^2}}} \times v \\ $
$ \implies l = \dfrac{1}{{n\pi {{(d)}^2}}} \\ $
$ \implies l = \dfrac{1}{{n\pi {{(2r)}^2}}} \\ $
\[\left( {d{\text{ }} = {\text{ }}2r} \right)\]
\[
l = \dfrac{1}{{4n\pi {r^2}}} \\
l = k/{r^2} \\
\]
Where,
\[k = \dfrac{1}{{4n\pi }}\]\[{r^2}\]
We find that the mean free path is depending inversely to the square of the radius of the molecule
So, the correct answer is “Option B”.
Note:
In the above procedure, the area is taken as $A_{collision} = \pi (d)^2$, because of this following explanation.
\[{A_{collision}} = \pi {(2r)^2}\] The molecule in the center collides with other molecules with not in the circle of but and hence the probable cross-section of collision will be
The mean free path is dependent on other parameters too, which can be shown if those parameters are taken into consideration.
The various factors such as the radius of the molecule, space between molecules..,I.e., density, pressure, temperature etc.. all of which has to be carefully accounted into the formula.
Complete step by step answer:
Here, in this question, it’s specifically asking about the dependency of mean free path on the radius of the molecule. But we’ll need other parameters, and relationships to derive from an equation.
Consider a molecule with diameter with an average molecular speed of v.
From here, we can say that the molecule will undergo several collisions with many molecules in its path in time ____t, the area of probable collision will be,
\[{A_{collision}} = \pi {(d)^2}\]
the volume of probable collision before it collides with other molecules,
\[{V_{collision}} = v \times {A_{collision}} = v\pi {(d)^2}\]
If n is the number of molecules in that volume, then the time between two successive collisions is given by, the time between two successive collisions is given by,
\[\tau = \dfrac{1}{{nv\pi {{(d)}^2}}}\]
The average distance between two successive collisions, called the mean free path l is given by the product of mean collision time and mean velocity of the molecule, I.e.,
$ l = \tau v \\ $
$ \implies l = \dfrac{1}{{nv\pi {{(d)}^2}}} \times v \\ $
$ \implies l = \dfrac{1}{{n\pi {{(d)}^2}}} \\ $
$ \implies l = \dfrac{1}{{n\pi {{(2r)}^2}}} \\ $
\[\left( {d{\text{ }} = {\text{ }}2r} \right)\]
\[
l = \dfrac{1}{{4n\pi {r^2}}} \\
l = k/{r^2} \\
\]
Where,
\[k = \dfrac{1}{{4n\pi }}\]\[{r^2}\]
We find that the mean free path is depending inversely to the square of the radius of the molecule
So, the correct answer is “Option B”.
Note:
In the above procedure, the area is taken as $A_{collision} = \pi (d)^2$, because of this following explanation.
\[{A_{collision}} = \pi {(2r)^2}\] The molecule in the center collides with other molecules with not in the circle of but and hence the probable cross-section of collision will be
The mean free path is dependent on other parameters too, which can be shown if those parameters are taken into consideration.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE