Answer
Verified
408.6k+ views
Hint: The formula used to calculate the pressure of the gas is as follows.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant, ${{N}_{A}}$ = Avogadro number
T = Temperature of the gas
$\sigma $ = Diameter of the gas molecule
$\lambda $ = Mean free path
Complete step-by-step answer: - In the question it is asked to calculate the pressure of the gas and number of molecules per unit volume of the gas by using the data given in the question.
a) Initially we have to calculate the pressure of the gas by using the below formula.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant = 8.314 , ${{N}_{A}}$ = Avogadro number = $6.023\times {{10}^{23}}$
T = Temperature of the gas = 300 K
$\sigma $ = Diameter of the gas molecule = 0.26 nm = 0.26 $\times {{10}^{-10}}m$
$\lambda $ = Mean free path = $2.6\times {{10}^{-5}}m$
- Substitute the above values in the above formula to get the pressure of the gas.
\[ P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda } \\
=\dfrac{8.314\times 300}{\sqrt{2}\times 3.14\times 0.2\times {{10}^{-10}}\times 2.6\times {{10}^{-5}}} \\
=\dfrac{2494.5}{4700.86} \\
P=5.30\times {{10}^{2}} \\
\]
- The pressure of the gas at 300 K is $P=5.30\times {{10}^{2}}$.
b) Now we have to calculate the Number of molecules per unit volume of the gas by using the formula below.
P = cRT
P = Pressure of the gas = $5.30\times {{10}^{2}}$
c = Concentration of the gas
R = Gas constant = 8.314
T = Temperature of the gas = 300 K
- Substitute all the known values in the above formula to calculate the concentration of the gas.
P = cRT
\[\Rightarrow c=\dfrac{5.30\times {{10}^{2}}}{8.314\times 300} \\
\therefore c=2.12\times {{10}^{-3}} \\
\]
- From concentration we can calculate the number of molecules by using the below formula.
Number of molecules = (Concentration of the gas) (Avogadro Number)
Number of molecules of the gas = $2.12\times {{10}^{-2}}\times 6.023\times {{10}^{23}}=1.28\times {{10}^{21}}molecules/volume$
Note: To calculate the number of molecules of the gas first we have to find the pressure of the gas. By using pressure we have to calculate the concentration of the gas later using concentration of the gas we can calculate the number of molecules of the gas.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant, ${{N}_{A}}$ = Avogadro number
T = Temperature of the gas
$\sigma $ = Diameter of the gas molecule
$\lambda $ = Mean free path
Complete step-by-step answer: - In the question it is asked to calculate the pressure of the gas and number of molecules per unit volume of the gas by using the data given in the question.
a) Initially we have to calculate the pressure of the gas by using the below formula.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant = 8.314 , ${{N}_{A}}$ = Avogadro number = $6.023\times {{10}^{23}}$
T = Temperature of the gas = 300 K
$\sigma $ = Diameter of the gas molecule = 0.26 nm = 0.26 $\times {{10}^{-10}}m$
$\lambda $ = Mean free path = $2.6\times {{10}^{-5}}m$
- Substitute the above values in the above formula to get the pressure of the gas.
\[ P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda } \\
=\dfrac{8.314\times 300}{\sqrt{2}\times 3.14\times 0.2\times {{10}^{-10}}\times 2.6\times {{10}^{-5}}} \\
=\dfrac{2494.5}{4700.86} \\
P=5.30\times {{10}^{2}} \\
\]
- The pressure of the gas at 300 K is $P=5.30\times {{10}^{2}}$.
b) Now we have to calculate the Number of molecules per unit volume of the gas by using the formula below.
P = cRT
P = Pressure of the gas = $5.30\times {{10}^{2}}$
c = Concentration of the gas
R = Gas constant = 8.314
T = Temperature of the gas = 300 K
- Substitute all the known values in the above formula to calculate the concentration of the gas.
P = cRT
\[\Rightarrow c=\dfrac{5.30\times {{10}^{2}}}{8.314\times 300} \\
\therefore c=2.12\times {{10}^{-3}} \\
\]
- From concentration we can calculate the number of molecules by using the below formula.
Number of molecules = (Concentration of the gas) (Avogadro Number)
Number of molecules of the gas = $2.12\times {{10}^{-2}}\times 6.023\times {{10}^{23}}=1.28\times {{10}^{21}}molecules/volume$
Note: To calculate the number of molecules of the gas first we have to find the pressure of the gas. By using pressure we have to calculate the concentration of the gas later using concentration of the gas we can calculate the number of molecules of the gas.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE