Answer
Verified
394.8k+ views
Hint: Mechanical advantage of a machine is the ratio of the output force to the input force. It can also be defined as the ratio between the force exerted by the system and the force applied to the system. The output force or the force exerted by the system is the load in the question and the input force or the force applied to the system is mentioned as effort. Using these relations the value of force exerted by the system that is the load can be computed.
Formula used: $\text{Mechanical advantage}= \dfrac{\text{load}}{\text{effort}}$
Complete step-by-step solution:
The values that have been given to us are;
Mechanical advantage=\[5\]
and Effort = \[2kgf\]
The value of load must be determined;
To find the load, we must multiply mechanical advantage and effort
Therefore by using formula, $\text{Mechanical advantage}= \dfrac{\text{load}}{\text{effort}}$
Rearranging the given equation,
We get, Load= Mechanical advantage x Effort
Substituting the given values from the question,
We get, Load= \[(5 \times 2)kgf\]\[ = 10kgf\]
Therefore from the solution, we get the load value to be equal to \[10kgf\]
Note: Since mechanical advantage is the ratio of two forces, it is a dimensionless quantity. That is it is a unit of less quantity. Machines can have a mechanical advantage greater than one but a machine can't do more mechanical work than the work that was applied to the machine. The higher the value of mechanical advantage, the higher will be the output of the machine. The more the output value, the more efficient the system will be.
Formula used: $\text{Mechanical advantage}= \dfrac{\text{load}}{\text{effort}}$
Complete step-by-step solution:
The values that have been given to us are;
Mechanical advantage=\[5\]
and Effort = \[2kgf\]
The value of load must be determined;
To find the load, we must multiply mechanical advantage and effort
Therefore by using formula, $\text{Mechanical advantage}= \dfrac{\text{load}}{\text{effort}}$
Rearranging the given equation,
We get, Load= Mechanical advantage x Effort
Substituting the given values from the question,
We get, Load= \[(5 \times 2)kgf\]\[ = 10kgf\]
Therefore from the solution, we get the load value to be equal to \[10kgf\]
Note: Since mechanical advantage is the ratio of two forces, it is a dimensionless quantity. That is it is a unit of less quantity. Machines can have a mechanical advantage greater than one but a machine can't do more mechanical work than the work that was applied to the machine. The higher the value of mechanical advantage, the higher will be the output of the machine. The more the output value, the more efficient the system will be.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE