The minimum force required to move the body up an inclined plane is three times the minimum force required to prevent it from sliding down the plane. If the coefficient of friction between the body and the inclined plane is \[\dfrac{1}{{2\sqrt 3 }},\] the angle of the inclined plane is
(A) \[60^\circ \]
(B) \[45^\circ \]
(C) \[30^\circ \]
(D) \[15^\circ \]
Answer
Verified
471.3k+ views
Hint:
- We should know friction.
- We should have knowledge of all the forces acting or a body or air inclined plane.
- We need to know the relation between the frictional force \[\left( {fs} \right)\] with normal reaction (R) i.e. \[{f_s} = \mu R\]
Complete step by step Solution:
Here, the mass of the body \[ = {\text{ }}m\]
Applied force \[ = {\text{ }}F,\] normal reaction \[ = {\text{ }}R\]
Friction force \[ = {\text{ }}{f_s}\]
Acceleration due to gravity \[ = {\text{ }}g\]
Angle of the inclined plane \[ = \theta \]
Coefficient of friction \[ = \]is
Now, for the body to move up, opposing forces are \[mg\sin \theta \,\,4\,\,{f_s},\] so, \[{F_{up}} = mg\sin \theta + {f_s}\]
\[{F_{up}} = mg\sin \theta + \mu R = mg\sin \theta + \mu mg\cos \theta \]
For preventing the body opposing force is \[mg\sin \theta \] & helping
Force \[{f_s}\], so, \[{F_{down}} = mg\sin \theta - \mu mg\cos \theta \]
Now, given, \[{F_{up}} = 3\,\,{F_{down}}\]
\[ \Rightarrow \left( {mg\sin \theta + \mu mg\cos \theta } \right) = 3\left( {mg\sin \theta - \mu \cos \theta } \right)\]
\[ \Rightarrow 2\sin \theta = 4\mu \,\,\cos \theta \]
\[ \Rightarrow \tan \theta = 2\mu \]
\[\theta = {\tan ^ - }\left( {2\mu } \right)\]
Given, \[\mu = \dfrac{1}{{2\sqrt 3 }}\]
\[\therefore \,\,\,\theta = {\tan ^ - }\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ = 30^\circ \]
So, option (c) is correct.
Note:
- We to take case while calculating upward 4 downward force
- Fup should be greater than \[{F_{down}}\].
- We have to take care while calculating numerical value.
- We should know friction.
- We should have knowledge of all the forces acting or a body or air inclined plane.
- We need to know the relation between the frictional force \[\left( {fs} \right)\] with normal reaction (R) i.e. \[{f_s} = \mu R\]
Complete step by step Solution:
Here, the mass of the body \[ = {\text{ }}m\]
Applied force \[ = {\text{ }}F,\] normal reaction \[ = {\text{ }}R\]
Friction force \[ = {\text{ }}{f_s}\]
Acceleration due to gravity \[ = {\text{ }}g\]
Angle of the inclined plane \[ = \theta \]
Coefficient of friction \[ = \]is
Now, for the body to move up, opposing forces are \[mg\sin \theta \,\,4\,\,{f_s},\] so, \[{F_{up}} = mg\sin \theta + {f_s}\]
\[{F_{up}} = mg\sin \theta + \mu R = mg\sin \theta + \mu mg\cos \theta \]
For preventing the body opposing force is \[mg\sin \theta \] & helping
Force \[{f_s}\], so, \[{F_{down}} = mg\sin \theta - \mu mg\cos \theta \]
Now, given, \[{F_{up}} = 3\,\,{F_{down}}\]
\[ \Rightarrow \left( {mg\sin \theta + \mu mg\cos \theta } \right) = 3\left( {mg\sin \theta - \mu \cos \theta } \right)\]
\[ \Rightarrow 2\sin \theta = 4\mu \,\,\cos \theta \]
\[ \Rightarrow \tan \theta = 2\mu \]
\[\theta = {\tan ^ - }\left( {2\mu } \right)\]
Given, \[\mu = \dfrac{1}{{2\sqrt 3 }}\]
\[\therefore \,\,\,\theta = {\tan ^ - }\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ = 30^\circ \]
So, option (c) is correct.
Note:
- We to take case while calculating upward 4 downward force
- Fup should be greater than \[{F_{down}}\].
- We have to take care while calculating numerical value.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE