Answer
Verified
462.9k+ views
Hint: The given sum 1+3+5+… is the sum of a sequence, which is in AP since the difference between consecutive terms is the same. Now we know the sum of n terms of AP is $\dfrac{n}{2}\left[ 2a+(n-1)d \right]$ where a is the first term, d is a common difference, and n is the number of terms.
Hence with the help of this formula and the given condition we can find required n.
Complete step-by-step solution:
Now the given series is $1+3+5+……….$
Here we know the first term is 1.
Difference between any two consecutive terms is \[5-3=3-1=2\]
Now let us try to find the sum of n terms of this series. We know sum of AP is given by $\dfrac{n}{2}\left[ 2a+(n-1)d \right]$
Here we have $a=1$ and $d=2$. Hence sum of n terms will be
$\dfrac{n}{2}\left[ 2(1)+(n-1)(2) \right]$
$=\dfrac{n}{2}\left[ 2+2n-2 \right]$
\[=\dfrac{n}{2}\times \left[ 2n \right]\]
\[={{n}^{2}}\]
Hence now we have the sum $1+3+5+…n$ is \[={{n}^{2}}\]
Now we have to find n such that the sum of the given series is greater than in 1357.
Now let us check the options.
If $n = 37$ then ${{n}^{2}}=37\times 37=1369$
If $n = 36$ then ${{n}^{2}}=36\times 36=1296$
Now for n = 36 we get ${{n}^{2}}=1296<1357$ and for n = 37 we get ${{n}^{2}}=1369$
Hence, the minimum number such that the sum of $1+3+5+…n$ is exceeding 1357 is 1369 and this will happen for $n = 37.$
Hence, the number of terms required is 37.
Option b is the correct option.
Note: Since the sum of odd natural numbers is equal to \[{{n}^{2}}\]we just have to find the square root of sum for thee required n. If the options are not available by hook or crook we can substitute the value of n and find ${{n}^{2}}$ such that it satisfies the required condition. In this case, the condition is to find least n such that${{n}^{2}} >1357$. Hence all we have to do is find n such that ${{n}^{2}}> 1357$ and ${{(n-1)}^{2}}< 1357$.
Hence with the help of this formula and the given condition we can find required n.
Complete step-by-step solution:
Now the given series is $1+3+5+……….$
Here we know the first term is 1.
Difference between any two consecutive terms is \[5-3=3-1=2\]
Now let us try to find the sum of n terms of this series. We know sum of AP is given by $\dfrac{n}{2}\left[ 2a+(n-1)d \right]$
Here we have $a=1$ and $d=2$. Hence sum of n terms will be
$\dfrac{n}{2}\left[ 2(1)+(n-1)(2) \right]$
$=\dfrac{n}{2}\left[ 2+2n-2 \right]$
\[=\dfrac{n}{2}\times \left[ 2n \right]\]
\[={{n}^{2}}\]
Hence now we have the sum $1+3+5+…n$ is \[={{n}^{2}}\]
Now we have to find n such that the sum of the given series is greater than in 1357.
Now let us check the options.
If $n = 37$ then ${{n}^{2}}=37\times 37=1369$
If $n = 36$ then ${{n}^{2}}=36\times 36=1296$
Now for n = 36 we get ${{n}^{2}}=1296<1357$ and for n = 37 we get ${{n}^{2}}=1369$
Hence, the minimum number such that the sum of $1+3+5+…n$ is exceeding 1357 is 1369 and this will happen for $n = 37.$
Hence, the number of terms required is 37.
Option b is the correct option.
Note: Since the sum of odd natural numbers is equal to \[{{n}^{2}}\]we just have to find the square root of sum for thee required n. If the options are not available by hook or crook we can substitute the value of n and find ${{n}^{2}}$ such that it satisfies the required condition. In this case, the condition is to find least n such that${{n}^{2}} >1357$. Hence all we have to do is find n such that ${{n}^{2}}> 1357$ and ${{(n-1)}^{2}}< 1357$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE