Answer
Verified
470.1k+ views
Hint: To answer this question first try to find the weight of chloroform present in water then using the density of water, we can easily convert this value to the molality of water.
Complete step by step answer:
Here we should know that X ppm means in solution means X parts in the one million ( ${ 10 }^{ 6 }$) parts.
Since we are given 15 ppm chloroform,
Therefore,
% by mass of chloroform = $\dfrac { 15 }{ { 10 }^{ 6 } } \times 100$ = 1.5 x ${ 10 }^{ -3 }$ %
Now, we know the formula of molality in terms of % by mass is given by,
$Molality(m)=\dfrac { Percent\quad by\quad mass\times density\quad of\quad solution\times 10 }{ Molar\quad mass\quad of\quad solute }$
Where,
% by mass = 1.5 x ${ 10 }^{ -3 }$ %
density of solution = 1g/${ cm }^{ 3 }$
Molar mass of solute (${ CHCl }_{ 3 }$) = 119 g/mol
Now, insert these values in the equation,
$Molality(m)\quad =\quad \dfrac { 1.5\times { 10 }^{ -3 }\times 1\times 10 }{ 119 }$
$Molality(m)\quad =\quad \dfrac { 1.5\times { 10 }^{ -3 } }{ 119 } $
$Molality(m)\quad =\quad 1.25\times { 10 }^{ -4 }\quad m$
Therefore, the correct answer to this question is option A, $1.25\times { 10 }^{ -4 }\quad m$.
Note:
We should know that Concentrations expressed in molality are used when studying the properties of solutions related to vapor pressure and temperature changes. It is used because its value does not change with changes in temperature.
Complete step by step answer:
Here we should know that X ppm means in solution means X parts in the one million ( ${ 10 }^{ 6 }$) parts.
Since we are given 15 ppm chloroform,
Therefore,
% by mass of chloroform = $\dfrac { 15 }{ { 10 }^{ 6 } } \times 100$ = 1.5 x ${ 10 }^{ -3 }$ %
Now, we know the formula of molality in terms of % by mass is given by,
$Molality(m)=\dfrac { Percent\quad by\quad mass\times density\quad of\quad solution\times 10 }{ Molar\quad mass\quad of\quad solute }$
Where,
% by mass = 1.5 x ${ 10 }^{ -3 }$ %
density of solution = 1g/${ cm }^{ 3 }$
Molar mass of solute (${ CHCl }_{ 3 }$) = 119 g/mol
Now, insert these values in the equation,
$Molality(m)\quad =\quad \dfrac { 1.5\times { 10 }^{ -3 }\times 1\times 10 }{ 119 }$
$Molality(m)\quad =\quad \dfrac { 1.5\times { 10 }^{ -3 } }{ 119 } $
$Molality(m)\quad =\quad 1.25\times { 10 }^{ -4 }\quad m$
Therefore, the correct answer to this question is option A, $1.25\times { 10 }^{ -4 }\quad m$.
Note:
We should know that Concentrations expressed in molality are used when studying the properties of solutions related to vapor pressure and temperature changes. It is used because its value does not change with changes in temperature.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE