Answer
Verified
446.7k+ views
Hint: We can use the ideal gas equation to find which quantity varies with the variation in volume. We can check how that quantity is dependent on volume, whether directly or inversely proportional. If it’s directly proportional then the variation in both the quantities will be alike and in case of inverse proportionality, the changes in both the quantities are opposite to each other.
Complete step by step answer:
According to the ideal gas equation, we have:
\[PV = nRT\;\] where, n is the number of moles, R is the universal gas constant and T is the temperature.
Number of moles (n) is the number of molecules (N) divided by the Avogadro’s number $\left( {{N_A}} \right)$.
$ \to n = \dfrac{N}{{{N_A}}}$
$ \Rightarrow PV = \dfrac{N}{{{N_A}}}RT$
So, for the value of volume, this can be written as:
$V = \dfrac{N}{{{N_A}}} \times \dfrac{{RT}}{P}$
It is given that the Pressure and temperature are the same for the gas that means they are constant. Every quantity except the number of molecules (N) on the R.H.S of the equation.
$ \Rightarrow V \propto N$
Volume is directly proportional to the number of molecules, with the increase in volume, it will increase and vice – versa.
Thus, for equal volume of gases, the number of molecules will also be equal.
So, the correct answer is “Option A”.
Note:
The question can also be directly answered by the Avogadro’s law:
It is given that the pressure and temperature of the gases are the same. So according to the Avogadro’s law, under same conditions of temperature and pressure the number of molecules are equal for equal volume of gases
Complete step by step answer:
According to the ideal gas equation, we have:
\[PV = nRT\;\] where, n is the number of moles, R is the universal gas constant and T is the temperature.
Number of moles (n) is the number of molecules (N) divided by the Avogadro’s number $\left( {{N_A}} \right)$.
$ \to n = \dfrac{N}{{{N_A}}}$
$ \Rightarrow PV = \dfrac{N}{{{N_A}}}RT$
So, for the value of volume, this can be written as:
$V = \dfrac{N}{{{N_A}}} \times \dfrac{{RT}}{P}$
It is given that the Pressure and temperature are the same for the gas that means they are constant. Every quantity except the number of molecules (N) on the R.H.S of the equation.
$ \Rightarrow V \propto N$
Volume is directly proportional to the number of molecules, with the increase in volume, it will increase and vice – versa.
Thus, for equal volume of gases, the number of molecules will also be equal.
So, the correct answer is “Option A”.
Note:
The question can also be directly answered by the Avogadro’s law:
It is given that the pressure and temperature of the gases are the same. So according to the Avogadro’s law, under same conditions of temperature and pressure the number of molecules are equal for equal volume of gases
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE