
The Molarity of a dibasic acid is M. The equivalent weight of the acid is E. The amount of the acid present in 500 ml of the solution is:
A. \[2\times M\times E\]
B. \[M\times E\]
C. \[\dfrac{M\times E}{2}\]
D. \[\dfrac{M\times E}{4}\]
Answer
504.3k+ views
Hint: To solve this question we should know about dibasic acid. If we want to find an amount of acid in solution, we can use the concept of molarity. Molarity equation will lead us to the answer.
Complete step by step answer:
At first, we will know about the dibasic acid.
From the term dibasic acid, we can commonly refer to any substance that can donate two protons or hydrogen (\[{{H}^{+}}\]) ions per molecule in an acid base reaction. Due to this property, the dibasic acid is also known as diprotic acids. A dibasic acid yields two free hydrogen ions in solution for each molecule of acid ionized or in other terms, has two replaceable hydrogen atoms. A simple example of a dibasic acid is sulphuric acid (\[{{H}_{2}}S{{O}_{4}}\text{ }\]).
\[{{H}_{2}}S{{O}_{4}}\text{ }\to \text{ }2{{H}^{+}}+\text{ }SO_{4}^{2-}\]
Number of replaceable hydrogen or the number of equivalents is 2.
We will use molarity to find this question.
$Molarity(M)=\dfrac{number\,of\,moles\,of\,solute(n)}{volume\,of\,solution\,in\,litres}$\[\]
$M=\dfrac{n}{\dfrac{500}{1000}}=2n$ $\to Molarity=2\times moles\,of\,solute$
$\to Number\,of\,moles=\dfrac{Molarity}{2}$
And we know that $\to $$Number\,of\,moles=\dfrac{weight}{molar\,mass}$
\[\to Number\,of\,moles=\dfrac{weight}{molar\,mass}=\dfrac{Molarity}{2}\]
\[\to weight\,\,of\,solute\,present\,in\,solution=\dfrac{Molarity}{2}\times molar\,mass\] (Equation 1st)
Weight of solute present in solution= amount of acid present.
And we know about equivalent weight that,
\[Equivalent\,weight=\dfrac{molar\,mass}{number\,of\,equivalents}\] (Equation 2nd)
Here, molar mass will be of dibasic acid and the number of equivalents will be 2. Because it can donate two protons or hydrogen (H+) ions per molecule in an acid base reaction.
So, our equation 2nd will look like this:
\[Equivalent\,weight=\dfrac{molar\,mass\,of\,dibasic\,acid}{2}\]
So, by this our 1st equation will be like this:
\[\to weight\,\,of\,acid\,present\,in\,solution=Molarity\times \dfrac{molar\,mass\,of\,dibasic\,acid}{2}\]
\[Amount\,of\,acid\,present\,in\,solution=Molarity\times Equivalent\,weight\]
So, our correct option will be B.
Note: In this question we use the concept of both molarity and equivalent weight. There is one important difference we used in this question that is weight and mass. Mass is the amount of matter in something, while weight is the gravitational pull on a mass. We never use molar mass to find actual weight of solute or solvent present in solution.
Complete step by step answer:
At first, we will know about the dibasic acid.
From the term dibasic acid, we can commonly refer to any substance that can donate two protons or hydrogen (\[{{H}^{+}}\]) ions per molecule in an acid base reaction. Due to this property, the dibasic acid is also known as diprotic acids. A dibasic acid yields two free hydrogen ions in solution for each molecule of acid ionized or in other terms, has two replaceable hydrogen atoms. A simple example of a dibasic acid is sulphuric acid (\[{{H}_{2}}S{{O}_{4}}\text{ }\]).
\[{{H}_{2}}S{{O}_{4}}\text{ }\to \text{ }2{{H}^{+}}+\text{ }SO_{4}^{2-}\]
Number of replaceable hydrogen or the number of equivalents is 2.
We will use molarity to find this question.
$Molarity(M)=\dfrac{number\,of\,moles\,of\,solute(n)}{volume\,of\,solution\,in\,litres}$\[\]
$M=\dfrac{n}{\dfrac{500}{1000}}=2n$ $\to Molarity=2\times moles\,of\,solute$
$\to Number\,of\,moles=\dfrac{Molarity}{2}$
And we know that $\to $$Number\,of\,moles=\dfrac{weight}{molar\,mass}$
\[\to Number\,of\,moles=\dfrac{weight}{molar\,mass}=\dfrac{Molarity}{2}\]
\[\to weight\,\,of\,solute\,present\,in\,solution=\dfrac{Molarity}{2}\times molar\,mass\] (Equation 1st)
Weight of solute present in solution= amount of acid present.
And we know about equivalent weight that,
\[Equivalent\,weight=\dfrac{molar\,mass}{number\,of\,equivalents}\] (Equation 2nd)
Here, molar mass will be of dibasic acid and the number of equivalents will be 2. Because it can donate two protons or hydrogen (H+) ions per molecule in an acid base reaction.
So, our equation 2nd will look like this:
\[Equivalent\,weight=\dfrac{molar\,mass\,of\,dibasic\,acid}{2}\]
So, by this our 1st equation will be like this:
\[\to weight\,\,of\,acid\,present\,in\,solution=Molarity\times \dfrac{molar\,mass\,of\,dibasic\,acid}{2}\]
\[Amount\,of\,acid\,present\,in\,solution=Molarity\times Equivalent\,weight\]
So, our correct option will be B.
Note: In this question we use the concept of both molarity and equivalent weight. There is one important difference we used in this question that is weight and mass. Mass is the amount of matter in something, while weight is the gravitational pull on a mass. We never use molar mass to find actual weight of solute or solvent present in solution.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

A solution of a substance X is used for white washing class 11 chemistry CBSE

10 examples of friction in our daily life

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Can anyone list 10 advantages and disadvantages of friction
