Answer
Verified
462.9k+ views
Hint: The perpendicular axis theorem is defined as that moment of inertia of a planar lamina about an axis perpendicular to the lamina which is equal to the sum of the moment inertia of the Lamina about the two axes at the right angle to each other in its own plane of intersection to each other.
Complete answer:
According to perpendicular axis:
$I = {I_C} + m{(\dfrac{a}{{\sqrt 2 }})^2}$
$ \Rightarrow (\dfrac{{m{a^2}}}{{12}} - \dfrac{{m{a^2}}}{{12}}) + \dfrac{{m{a^2}}}{2} = \dfrac{2}{3}m{a^2}$
$I = \dfrac{2}{3}m{a^2}$
The term moment of inertia is also known as mass moment of inertia. It is defined as the ratio of net angular momentum of a system to its angular velocity around the principal axis. Moment of inertia plays a very important role in physics which means that in physics problems that involve the mass in rotation motion and that are calculated by angular momentum.
So, the correct answer is “Option A”.
Additional Information:
THERE ARE THREE TYPES OF INERTIA:
a. INERTIA OF REST
b. INERTIA OF MOTION
C.INERTIA OF DIRECTION
If the moment of inertia is increased there will be a slowing down process of speed of rotation. We can also say that the moment of inertia of the body is directly proportional to the mass and it increases as the mass moves further from the axis of rotation.
Note:
Don’t get confused in saying that the moment of inertia and the inertia is the same in nature in physics. No it is not inertia means just the state of the body either it is in motion or rest whereas the moment of inertia is the measurement of resistances of the object against the rotation.
Complete answer:
According to perpendicular axis:
$I = {I_C} + m{(\dfrac{a}{{\sqrt 2 }})^2}$
$ \Rightarrow (\dfrac{{m{a^2}}}{{12}} - \dfrac{{m{a^2}}}{{12}}) + \dfrac{{m{a^2}}}{2} = \dfrac{2}{3}m{a^2}$
$I = \dfrac{2}{3}m{a^2}$
The term moment of inertia is also known as mass moment of inertia. It is defined as the ratio of net angular momentum of a system to its angular velocity around the principal axis. Moment of inertia plays a very important role in physics which means that in physics problems that involve the mass in rotation motion and that are calculated by angular momentum.
So, the correct answer is “Option A”.
Additional Information:
THERE ARE THREE TYPES OF INERTIA:
a. INERTIA OF REST
b. INERTIA OF MOTION
C.INERTIA OF DIRECTION
If the moment of inertia is increased there will be a slowing down process of speed of rotation. We can also say that the moment of inertia of the body is directly proportional to the mass and it increases as the mass moves further from the axis of rotation.
Note:
Don’t get confused in saying that the moment of inertia and the inertia is the same in nature in physics. No it is not inertia means just the state of the body either it is in motion or rest whereas the moment of inertia is the measurement of resistances of the object against the rotation.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE