![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The moment of inertia of a spherical shell and a hemispherical shell of same mass and radius about a tangential axis, passing through $P$ will be
A.Different
B.Same
C.Data insufficient
D.None of these
![seo images](https://www.vedantu.com/question-sets/4ca40162-0e26-46ed-a742-7ae8974aac538196492176331523060.png)
Answer
426.6k+ views
Hint: To solve this question, we should calculate moment of inertia of both the spherical shell and hemispherical shell separately about a tangential axis and then find out whether the moment of inertia is the same or different. Also, we would have to use parallel axis theorem to find the moment of inertia about a tangential axis.
Complete answer:
The moment of inertia of a spherical shell about an axis passing through its centroid is:
$\dfrac{2}{3}M{{R}^{2}}$
Here, $M$ is the mass of the spherical shell and $R$ is its radius.
Now, using parallel axis theorem, the moment of inertia of the spherical shell about a tangential axis will be:
$\begin{align}
& \dfrac{2}{3}M{{R}^{2}}+M{{R}^{2}} \\
& \Rightarrow \dfrac{5}{3}M{{R}^{2}} \\
\end{align}$
The moment of inertia of a hemi-spherical shell about an axis passing through its centroid is:
$\dfrac{2}{3}M{{R}^{2}}$
Here, $M$ is the mass of the spherical shell and $R$ is its radius.
Now, using parallel axis theorem, the moment of inertia of the hemi-spherical shell about a tangential axis will be as follows:
$\begin{align}
& \dfrac{2}{3}M{{R}^{2}}+M{{R}^{2}} \\
& \Rightarrow \dfrac{5}{3}M{{R}^{2}} \\
\end{align}$
Thus, the moment of inertia of a spherical shell and a hemispherical shell of same mass and radius about a tangential axis, passing through $P$ will be the same.
Hence option $B$ is the correct option.
Note:
The parallel axis theorem helps us to find the moment of inertia of a body about an axis that is parallel to an axis about whom, the moment of inertia of that body is known to us. We used this theorem to solve the given question and found out the moment of inertia of the two bodies about a tangential axis.
Complete answer:
The moment of inertia of a spherical shell about an axis passing through its centroid is:
$\dfrac{2}{3}M{{R}^{2}}$
Here, $M$ is the mass of the spherical shell and $R$ is its radius.
Now, using parallel axis theorem, the moment of inertia of the spherical shell about a tangential axis will be:
$\begin{align}
& \dfrac{2}{3}M{{R}^{2}}+M{{R}^{2}} \\
& \Rightarrow \dfrac{5}{3}M{{R}^{2}} \\
\end{align}$
The moment of inertia of a hemi-spherical shell about an axis passing through its centroid is:
$\dfrac{2}{3}M{{R}^{2}}$
Here, $M$ is the mass of the spherical shell and $R$ is its radius.
Now, using parallel axis theorem, the moment of inertia of the hemi-spherical shell about a tangential axis will be as follows:
$\begin{align}
& \dfrac{2}{3}M{{R}^{2}}+M{{R}^{2}} \\
& \Rightarrow \dfrac{5}{3}M{{R}^{2}} \\
\end{align}$
Thus, the moment of inertia of a spherical shell and a hemispherical shell of same mass and radius about a tangential axis, passing through $P$ will be the same.
Hence option $B$ is the correct option.
Note:
The parallel axis theorem helps us to find the moment of inertia of a body about an axis that is parallel to an axis about whom, the moment of inertia of that body is known to us. We used this theorem to solve the given question and found out the moment of inertia of the two bodies about a tangential axis.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)