Answer
Verified
474.6k+ views
Hint: To find the moment of inertia of any shape about an unknown axis, first we need to know the moment of inertia of the shape about an axis either perpendicular to it or parallel to it. If we know the moment of inertia of a shape about an axis passing through the centre of mass of the body, then we can find the moment of inertia about any axis parallel to it by the use of parallel axis theorem.
Formula used:
${ I }_{ axis }={ I }_{ com }\ +\ Md^{ 2 }$ [ Statement of parallel axis theorem ]
Where M is the mass of the body and d is the distance of the axis from the centre of mass ( COM ) of the body.
Complete step by step answer:
Since every diameter of a sphere passes through its centre of mass, hence the moment of inertia of a sphere about its diameter is also the moment of inertia about its centre of mass. Now, to find the moment of inertia about its tangent, the distance between diameter and a tangent equals ‘R’.
Given, $I_{com} = I$ and $d= R$
Now using parallel axis theorem:
$I_{axis} = I + MR^2$ ------ 1.
As we know, the moment of inertia of solid sphere about its an axis passing through its centre of mass
is $\dfrac{2}{5}MR^2$.
Hence $I$=$\dfrac{2}{5}MR^2$
Or $MR^2 = \dfrac{5}{2}I$
Now putting $MR^2$ in equation 1. we get,
$I_{axis} = I + \dfrac{5}{2}I= \dfrac{7}{2}I$
So, the correct answer is “Option D”.
Note:
While using the Parallel axis theorem, one axis should always be the one passing through the centre of mass. Chance of mistakes is high if one avoids this information. Students are advised to learn the moment of inertia of commonly used shapes for example: Disc, sphere, etc. $\dfrac25MR^2$ is the moment of inertia of a solid sphere about an axis passing through its centre of mass.
Formula used:
${ I }_{ axis }={ I }_{ com }\ +\ Md^{ 2 }$ [ Statement of parallel axis theorem ]
Where M is the mass of the body and d is the distance of the axis from the centre of mass ( COM ) of the body.
Complete step by step answer:
Since every diameter of a sphere passes through its centre of mass, hence the moment of inertia of a sphere about its diameter is also the moment of inertia about its centre of mass. Now, to find the moment of inertia about its tangent, the distance between diameter and a tangent equals ‘R’.
Given, $I_{com} = I$ and $d= R$
Now using parallel axis theorem:
$I_{axis} = I + MR^2$ ------ 1.
As we know, the moment of inertia of solid sphere about its an axis passing through its centre of mass
is $\dfrac{2}{5}MR^2$.
Hence $I$=$\dfrac{2}{5}MR^2$
Or $MR^2 = \dfrac{5}{2}I$
Now putting $MR^2$ in equation 1. we get,
$I_{axis} = I + \dfrac{5}{2}I= \dfrac{7}{2}I$
So, the correct answer is “Option D”.
Note:
While using the Parallel axis theorem, one axis should always be the one passing through the centre of mass. Chance of mistakes is high if one avoids this information. Students are advised to learn the moment of inertia of commonly used shapes for example: Disc, sphere, etc. $\dfrac25MR^2$ is the moment of inertia of a solid sphere about an axis passing through its centre of mass.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE