The moment of inertia of a uniform solid sphere about its diameter is $I$. Its moment of inertia about a tangent is __________.
$\text A. \quad \dfrac{4}{3} I$
$\text B. \quad \dfrac{5}{4} I$
$\text C. \quad \dfrac{5}{3} I$
$\text D. \quad \dfrac{7}{2} I$
Answer
Verified
484.5k+ views
Hint: To find the moment of inertia of any shape about an unknown axis, first we need to know the moment of inertia of the shape about an axis either perpendicular to it or parallel to it. If we know the moment of inertia of a shape about an axis passing through the centre of mass of the body, then we can find the moment of inertia about any axis parallel to it by the use of parallel axis theorem.
Formula used:
${ I }_{ axis }={ I }_{ com }\ +\ Md^{ 2 }$ [ Statement of parallel axis theorem ]
Where M is the mass of the body and d is the distance of the axis from the centre of mass ( COM ) of the body.
Complete step by step answer:
Since every diameter of a sphere passes through its centre of mass, hence the moment of inertia of a sphere about its diameter is also the moment of inertia about its centre of mass. Now, to find the moment of inertia about its tangent, the distance between diameter and a tangent equals ‘R’.
Given, $I_{com} = I$ and $d= R$
Now using parallel axis theorem:
$I_{axis} = I + MR^2$ ------ 1.
As we know, the moment of inertia of solid sphere about its an axis passing through its centre of mass
is $\dfrac{2}{5}MR^2$.
Hence $I$=$\dfrac{2}{5}MR^2$
Or $MR^2 = \dfrac{5}{2}I$
Now putting $MR^2$ in equation 1. we get,
$I_{axis} = I + \dfrac{5}{2}I= \dfrac{7}{2}I$
So, the correct answer is “Option D”.
Note:
While using the Parallel axis theorem, one axis should always be the one passing through the centre of mass. Chance of mistakes is high if one avoids this information. Students are advised to learn the moment of inertia of commonly used shapes for example: Disc, sphere, etc. $\dfrac25MR^2$ is the moment of inertia of a solid sphere about an axis passing through its centre of mass.
Formula used:
${ I }_{ axis }={ I }_{ com }\ +\ Md^{ 2 }$ [ Statement of parallel axis theorem ]
Where M is the mass of the body and d is the distance of the axis from the centre of mass ( COM ) of the body.
Complete step by step answer:
Since every diameter of a sphere passes through its centre of mass, hence the moment of inertia of a sphere about its diameter is also the moment of inertia about its centre of mass. Now, to find the moment of inertia about its tangent, the distance between diameter and a tangent equals ‘R’.
Given, $I_{com} = I$ and $d= R$
Now using parallel axis theorem:
$I_{axis} = I + MR^2$ ------ 1.
As we know, the moment of inertia of solid sphere about its an axis passing through its centre of mass
is $\dfrac{2}{5}MR^2$.
Hence $I$=$\dfrac{2}{5}MR^2$
Or $MR^2 = \dfrac{5}{2}I$
Now putting $MR^2$ in equation 1. we get,
$I_{axis} = I + \dfrac{5}{2}I= \dfrac{7}{2}I$
So, the correct answer is “Option D”.
Note:
While using the Parallel axis theorem, one axis should always be the one passing through the centre of mass. Chance of mistakes is high if one avoids this information. Students are advised to learn the moment of inertia of commonly used shapes for example: Disc, sphere, etc. $\dfrac25MR^2$ is the moment of inertia of a solid sphere about an axis passing through its centre of mass.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE