Answer
Verified
441.3k+ views
Hint:First we must find the molecular mass of the given crystal using the available data. To find that, you must recall the formula for the density of a unit cell. We shall substitute the appropriate values in the formula given.
Formula used: $d = \dfrac{{n \times M}}{{{N_A} \times {a^3}}}$
Where, $d$ represents the density of the unit cell
$n$ denotes the number of atoms present in a unit cell
$M$ denotes the molecular mass of the given substance.
And, $a$ denotes the length of edge of the cubic unit cell
Complete step by step answer:
We know that, in a body centred cubic unit cell the atoms/ molecules are present at the corners of the cell and one at the centre of the cell. So, the number of atoms/ molecules present in a body centred cubic lattice is $n = 2$
Using the formula for density,
$d = \dfrac{{n \times M}}{{{N_A} \times {a^3}}}$
Rearranging:
$M = \dfrac{{d \times {N_A} \times {a^3}}}{n}$
Substituting the values, we get,
$M = \dfrac{{10 \times 6.022 \times {{10}^{23}} \times {{\left( {2 \times {{10}^{ - 8}}} \right)}^3}}}{2}$
$M = 24{\text{ g/mole}}$
Now we have the molecular mass of the given substance and so, we can find the number of atoms present easily by finding the number of moles in $2.4{\text{ g}}$ of the substance.
${\text{moles}} = \dfrac{{2.4}}{{24}} = 0.1{\text{ mole}}$
Thus, the number of atoms is given by $N = 0.1 \times {N_A} = 0.1 \times 6.022 \times {10^{23}}$
$N = 6.022 \times {10^{22}}$
Thus, the correct answer is D.
Note:
It should be known that in a body centred cubic unit cell, atoms are present at the corners and the centre of the cube. So, we can write that,
${n_c} = $ number of atoms present at the corners of the unit cell $ = 8$
${n_f} = $number of atoms present at the six faces of the unit cell $ = 0$
${n_i} = $ number of atoms present completely inside the unit cell $ = 1$
${n_e} = $number of atoms present at the edge centres of the unit cell $ = 0$
Thus, the total number of atoms in a body centred unit cell is
$n = \dfrac{{{n_c}}}{8} + \dfrac{{{n_f}}}{2} + \dfrac{{{n_i}}}{1} + \dfrac{{{n_e}}}{4}$
Substituting the values, we get
$n = \dfrac{8}{8} + \dfrac{0}{2} + \dfrac{1}{1} + \dfrac{0}{4}{\text{ }}$
$n = 1 + 0 + 1 + 0{\text{ }}$
Thus, $n = 2$
Formula used: $d = \dfrac{{n \times M}}{{{N_A} \times {a^3}}}$
Where, $d$ represents the density of the unit cell
$n$ denotes the number of atoms present in a unit cell
$M$ denotes the molecular mass of the given substance.
And, $a$ denotes the length of edge of the cubic unit cell
Complete step by step answer:
We know that, in a body centred cubic unit cell the atoms/ molecules are present at the corners of the cell and one at the centre of the cell. So, the number of atoms/ molecules present in a body centred cubic lattice is $n = 2$
Using the formula for density,
$d = \dfrac{{n \times M}}{{{N_A} \times {a^3}}}$
Rearranging:
$M = \dfrac{{d \times {N_A} \times {a^3}}}{n}$
Substituting the values, we get,
$M = \dfrac{{10 \times 6.022 \times {{10}^{23}} \times {{\left( {2 \times {{10}^{ - 8}}} \right)}^3}}}{2}$
$M = 24{\text{ g/mole}}$
Now we have the molecular mass of the given substance and so, we can find the number of atoms present easily by finding the number of moles in $2.4{\text{ g}}$ of the substance.
${\text{moles}} = \dfrac{{2.4}}{{24}} = 0.1{\text{ mole}}$
Thus, the number of atoms is given by $N = 0.1 \times {N_A} = 0.1 \times 6.022 \times {10^{23}}$
$N = 6.022 \times {10^{22}}$
Thus, the correct answer is D.
Note:
It should be known that in a body centred cubic unit cell, atoms are present at the corners and the centre of the cube. So, we can write that,
${n_c} = $ number of atoms present at the corners of the unit cell $ = 8$
${n_f} = $number of atoms present at the six faces of the unit cell $ = 0$
${n_i} = $ number of atoms present completely inside the unit cell $ = 1$
${n_e} = $number of atoms present at the edge centres of the unit cell $ = 0$
Thus, the total number of atoms in a body centred unit cell is
$n = \dfrac{{{n_c}}}{8} + \dfrac{{{n_f}}}{2} + \dfrac{{{n_i}}}{1} + \dfrac{{{n_e}}}{4}$
Substituting the values, we get
$n = \dfrac{8}{8} + \dfrac{0}{2} + \dfrac{1}{1} + \dfrac{0}{4}{\text{ }}$
$n = 1 + 0 + 1 + 0{\text{ }}$
Thus, $n = 2$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE