
The number of distinct real roots of the equation, $\left| {\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x} \\
{\sin x}&{\cos x}&{\sin x} \\
{\sin x}&{\sin x}&{\cos x}
\end{array}} \right| = 0$ in the interval $\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]$ is/are:
A. $3$
B. $2$
C. $1$
D. $4$
Answer
592.2k+ views
Hint:At first, use the row or column operations to simplify the determinant as much as you can. Once it is simplified, open the determinant and equate it to $0$. Find the value of $x$ such that the equation satisfies. Count the number of values.
Complete step-by-step answer:
$\left| {\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x} \\
{\sin x}&{\cos x}&{\sin x} \\
{\sin x}&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_1} \to {C_1} - {C_2}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&{\sin x}&{\sin x} \\
{\sin x - \cos x}&{\cos x}&{\sin x} \\
0&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_2} \to {C_2} - {C_3}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&0&{\sin x} \\
{\sin x - \cos x}&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $\sin x - \cos x$ common from ${C_1}$
$(\sin x - \cos x)$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $(\sin x - \cos x)$ from ${C_2}$
${(\sin x - \cos x)^2}$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{ - 1}&{\sin x} \\
0&1&{\cos x}
\end{array}} \right| = 0$
Now the determinant is simplified.
So, we will open it.
${(\sin x - \cos x)^2}$$\left[ { - 1( - \cos x - \sin x) + 0 + \sin x} \right] = 0$
${(\sin x - \cos x)^2}$$\left[ {\cos x + 2\sin x} \right] = 0$
At least one of the terms must be $0$ in order to satisfy the equation.
Hence, ${(\sin x - \cos x)^2}$$ = 0$ or $\left[ {\cos x + 2\sin x} \right] = 0$
$\sin x = \cos x$ or $2\sin x = -\cos x$
We know $\dfrac{\sin x}{\cos } = \tan x$
Simplifying we get $\tan x= 1$ or $\tan x = - \dfrac{1}{2}$
$x = \dfrac{\pi }{4}$ or $x = {\tan ^{ - 1}}( - \dfrac{1}{2})$
Now range of $x$ is $\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]$
Hence possible values of $x$ are $\dfrac{\pi }{4}$and ${\tan ^{ - 1}}( - \dfrac{1}{2})$
Hence there are two distinct real roots.
So, the correct answer is “Option B”.
Note:Students should be very careful about the signs while performing row or column operation.We have to carefully analyse which operation should be performed .Students should remember trigonometric ratios and method of calculating the determinant value for solving these types of problems.
Complete step-by-step answer:
$\left| {\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x} \\
{\sin x}&{\cos x}&{\sin x} \\
{\sin x}&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_1} \to {C_1} - {C_2}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&{\sin x}&{\sin x} \\
{\sin x - \cos x}&{\cos x}&{\sin x} \\
0&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_2} \to {C_2} - {C_3}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&0&{\sin x} \\
{\sin x - \cos x}&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $\sin x - \cos x$ common from ${C_1}$
$(\sin x - \cos x)$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $(\sin x - \cos x)$ from ${C_2}$
${(\sin x - \cos x)^2}$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{ - 1}&{\sin x} \\
0&1&{\cos x}
\end{array}} \right| = 0$
Now the determinant is simplified.
So, we will open it.
${(\sin x - \cos x)^2}$$\left[ { - 1( - \cos x - \sin x) + 0 + \sin x} \right] = 0$
${(\sin x - \cos x)^2}$$\left[ {\cos x + 2\sin x} \right] = 0$
At least one of the terms must be $0$ in order to satisfy the equation.
Hence, ${(\sin x - \cos x)^2}$$ = 0$ or $\left[ {\cos x + 2\sin x} \right] = 0$
$\sin x = \cos x$ or $2\sin x = -\cos x$
We know $\dfrac{\sin x}{\cos } = \tan x$
Simplifying we get $\tan x= 1$ or $\tan x = - \dfrac{1}{2}$
$x = \dfrac{\pi }{4}$ or $x = {\tan ^{ - 1}}( - \dfrac{1}{2})$
Now range of $x$ is $\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]$
Hence possible values of $x$ are $\dfrac{\pi }{4}$and ${\tan ^{ - 1}}( - \dfrac{1}{2})$
Hence there are two distinct real roots.
So, the correct answer is “Option B”.
Note:Students should be very careful about the signs while performing row or column operation.We have to carefully analyse which operation should be performed .Students should remember trigonometric ratios and method of calculating the determinant value for solving these types of problems.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

