Answer
Verified
471.3k+ views
Hint:
Any given atom may or may not have multiple oxidation states. This can be determined using the valence electronic configuration and this would in turn help us in finding the number of bonds made.
Complete step by step answer:
The central atom in \[S{F_6}\] is that of sulphur. We can understand this by looking at the oxidation numbers of the two constituent atoms of the given compound.
The electronic configuration of sulphur is \[1{s^2}2{s^2}2{p^6}2{s^2}2{p^4}\]. We can see that there are 4 electrons present in the 2p orbital, 2 electrons are present in the 2s orbital. Now, the possible oxidation states for sulphur might occur when,
1.2 electrons are accepted in the incomplete 2p orbital, hence corresponding oxidation state is -2.
2.no electrons are accepted in the 2p orbital, hence corresponding oxidation state is 0.
3.2 electrons are donated from the 2p orbital, hence corresponding oxidation state is +2.
4.4 electrons are donated from the 2p orbital, hence corresponding oxidation state is +4.
5.6 electrons are donated from the incomplete 2s and 2p orbitals, hence corresponding oxidation state is +6.
The corresponding oxidation state for sulphur can be identified by the oxidation state of the atom that is being bonded with sulphur.
In \[S{F_6}\], the other element is Fluorine and the electronic configuration of fluorine can be given as \[1{s^2}2{s^2}2{p^5}\]. Hence, we can see that the valence orbital in Fluorine, i.e. 2p has 5 electrons. It requires just 1 electron to completely fill the 2p orbital. Hence the oxidation state of fluorine is -1, because it accepts one electron to stabilise its valence orbital.
Since there are 6 atoms of fluorine in the given compound, we have 6 electrons with -1 oxidation state attached to only 1 sulphur atom.
Hence the corresponding oxidation state of sulphur in the given compound is +6, thus there are 6 bonds formed between one sulphur and 6 fluorine atoms.
Each bond formed utilises one pair of electrons. Since there are 6 bonds, we can say that the number of electron pairs present in the valence shell of a central atom in \[S{F_6}\] is 6 pairs.
Hence, Option B is the correct option.
Note:
It is important to see all the possible oxidation states for elements like sulphur. Because without considering both the oxidation number and the number of other atoms in the compound, the number of bonds formed cannot be accurately determined.
Any given atom may or may not have multiple oxidation states. This can be determined using the valence electronic configuration and this would in turn help us in finding the number of bonds made.
Complete step by step answer:
The central atom in \[S{F_6}\] is that of sulphur. We can understand this by looking at the oxidation numbers of the two constituent atoms of the given compound.
The electronic configuration of sulphur is \[1{s^2}2{s^2}2{p^6}2{s^2}2{p^4}\]. We can see that there are 4 electrons present in the 2p orbital, 2 electrons are present in the 2s orbital. Now, the possible oxidation states for sulphur might occur when,
1.2 electrons are accepted in the incomplete 2p orbital, hence corresponding oxidation state is -2.
2.no electrons are accepted in the 2p orbital, hence corresponding oxidation state is 0.
3.2 electrons are donated from the 2p orbital, hence corresponding oxidation state is +2.
4.4 electrons are donated from the 2p orbital, hence corresponding oxidation state is +4.
5.6 electrons are donated from the incomplete 2s and 2p orbitals, hence corresponding oxidation state is +6.
The corresponding oxidation state for sulphur can be identified by the oxidation state of the atom that is being bonded with sulphur.
In \[S{F_6}\], the other element is Fluorine and the electronic configuration of fluorine can be given as \[1{s^2}2{s^2}2{p^5}\]. Hence, we can see that the valence orbital in Fluorine, i.e. 2p has 5 electrons. It requires just 1 electron to completely fill the 2p orbital. Hence the oxidation state of fluorine is -1, because it accepts one electron to stabilise its valence orbital.
Since there are 6 atoms of fluorine in the given compound, we have 6 electrons with -1 oxidation state attached to only 1 sulphur atom.
Hence the corresponding oxidation state of sulphur in the given compound is +6, thus there are 6 bonds formed between one sulphur and 6 fluorine atoms.
Each bond formed utilises one pair of electrons. Since there are 6 bonds, we can say that the number of electron pairs present in the valence shell of a central atom in \[S{F_6}\] is 6 pairs.
Hence, Option B is the correct option.
Note:
It is important to see all the possible oxidation states for elements like sulphur. Because without considering both the oxidation number and the number of other atoms in the compound, the number of bonds formed cannot be accurately determined.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE