Answer
Verified
500.4k+ views
Hint: - Calculate total numbers having distinct digits then subtract this from total numbers.
Total three digit numbers between $100 \leqslant n \leqslant 999$
$999 - 99 = 900$, because 999 and 100 are included.
Now, a three digit number is to be formed from the digits $0,1,2,3,4,5,6,7,8,9$
$ \bullet \bullet \bullet $
Since the left most place i.e. hundred’s place cannot have zero.
So, there are 9 ways to fill hundred’s place.
Since, we consider the number with distinct digits, therefore repletion is not allowed, so, ten’s place can be filled by 9 remaining ways.
So, ten’s place can be filled in 9 ways.
Similarly, to fill the unit's place, we have 8 digits remaining.
So, the unit's place can be filled by 8 ways.
So, the required number of ways in which three distinct digit number can be formed are
$9 \times 9 \times 8 = 648$
So, the numbers having all the distinct digits $ = 648$
Thus, the remaining numbers containing at most two distinct digits $ = $ total numbers $ - $numbers having all the distinct digits.
$ = 900 - 648 = 252$
Hence, option $a$ is correct.
Note: - In such types of questions first calculate the total numbers, then calculate the total numbers having distinct digits using the procedure which is stated above, then subtract these values we will get the required answer.
Total three digit numbers between $100 \leqslant n \leqslant 999$
$999 - 99 = 900$, because 999 and 100 are included.
Now, a three digit number is to be formed from the digits $0,1,2,3,4,5,6,7,8,9$
$ \bullet \bullet \bullet $
Since the left most place i.e. hundred’s place cannot have zero.
So, there are 9 ways to fill hundred’s place.
Since, we consider the number with distinct digits, therefore repletion is not allowed, so, ten’s place can be filled by 9 remaining ways.
So, ten’s place can be filled in 9 ways.
Similarly, to fill the unit's place, we have 8 digits remaining.
So, the unit's place can be filled by 8 ways.
So, the required number of ways in which three distinct digit number can be formed are
$9 \times 9 \times 8 = 648$
So, the numbers having all the distinct digits $ = 648$
Thus, the remaining numbers containing at most two distinct digits $ = $ total numbers $ - $numbers having all the distinct digits.
$ = 900 - 648 = 252$
Hence, option $a$ is correct.
Note: - In such types of questions first calculate the total numbers, then calculate the total numbers having distinct digits using the procedure which is stated above, then subtract these values we will get the required answer.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE